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I Pre-proposal’s context, positioning and objective(s)

The advent of the applied category theory (ACT) paradigm as well as large-scale projects for formal-
izing mathematics via theorem provers (math-comp, math-classes, ....) offers an intriguing possibility
for interdisciplinary research in the theoretical sciences. We propose to apply these paradigms to a
research area in theoretical computer science that is ideally suited: the theory of compositional cat-
egorical rewriting, the modern generalization of the algebraic approach to graph rewriting.Starting
from the pioneering work of Ehrig et al. in the early 1970s [8], with a key milestone the theory of
adhesive categories as introduced by Lack and Sobocinski in the early 2000s [13], the categorical
approach to rewriting permits to treat a vast variety of systems of practical and theoretical interest,
and is the de facto standard approach in this field.

Contrary to existing projects aimed at formalizingmathematical concepts such as category theory
itself via theorem provers such as *Q[ [6], Ab�#2HH2f>PG [15] or G2�M [14], a peculiarity of categor-
ical rewriting resides in the nature of lemmata and proofs in this formalism, which is characterized
as being heavily based upon a diagrammatic calculus on commutative diagrams. This poses the
intriguing challenge of developing a suitable approach to profit from this highly modularized type of
mathematical reasoning also within the strategy to formalization within Coq, as well as the design
principle for interacting with Coq in a diagram-based form.

The key vision of this project is to assemble a team of domain experts as well as an international
online interest group targeted at developing and curating an interactive, Coq-enabled Wiki system
for categorical rewriting theory, aimed at both certifying and curating the knowledge in this research
field in a modern, openly accessible format.

a Objectives and scientific hypotheses

Work Package 1: Foundations and core engine

Task 1.1: Development of a methodology for diagrammatic reasoning in Coq. One of the key tech-
niques in formulating and proving statements in categorical rewriting theories is a certain type of
calculus on commutative diagrams. Fixing a suitable ambient category within which the given class
of rewriting systems is formulated, a number of crucial technical properties are made available, such
as certain statements on existence and nature of pushout squares (e.g. stability of monomorphisms),
certain subdivisibility properties of commutative squares or even three-dimensional statements such
as the van Kampen property (which entails certain statements about commutative cubes). Inspect-
ing the statement of proofs such as of the concurrency theorems, it is evident that a well-adapted
formalization of categorical rewriting theory within Coq should ideally be based upon a form of di-
agrammatic reasoning approach that closely follows the practice in the field. Contrary to existing
category theory libraries, we posit that an approach based upon the notion of sketches [1] (PAM?)
and on a carefully adapted usage of sigma-types in the spirit of [16] will permit a modularized ap-
proach to verifying commutative diagram based reasoning in Coq.

Task 1.2: Formalization (in Coq) and certification of a representative collection of axioms and theo-
rems for categorical rewriting theory. Taking the representative collection of axioms, lemmata and
theorems for compositional categorical rewriting theory as presented in [3, 5] as a starting point, we
aim to formalize a consistent corpus of formal knowledge in this field via our novel diagrammatic rea-
soning approach. This corpus should contain an encoding of suitable types of base categories (i.e.,
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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compositional rewriting  
double categories (crDCs)
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Figure 2: Convention for source and target functors for double categories.
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Figure 3: On the definition of double categories.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.

57

compositional rewriting  
double categories (crDCs)

O O I I

O0 O0 I0 I0

r

m

r0

m0
S
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Figure 2: Convention for source and target functors for double categories.

· · · ·

8 · · : 9 · ·

· · · ·

�

↵

�⇧v↵

↵

�

(a) Vertical composition ⇧v.

· · · · · ·
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· · · · · ·

↵ �
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↵ �

(b) Horizontal composition ⇧h.

· ·

· ·
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· ·
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↵

idr
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(c) (Strict) vertical unitarity.

· · · ·
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r

s
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(d) (Strict) horizontal unitarity.

Figure 3: On the definition of double categories.
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I Pre-proposal’s context, positioning and objective(s)

The advent of the applied category theory (ACT) paradigm as well as large-scale projects for formal-
izing mathematics via theorem provers (math-comp, math-classes, ....) offers an intriguing possibility
for interdisciplinary research in the theoretical sciences. We propose to apply these paradigms to a
research area in theoretical computer science that is ideally suited: the theory of compositional cat-
egorical rewriting, the modern generalization of the algebraic approach to graph rewriting.Starting
from the pioneering work of Ehrig et al. in the early 1970s [8], with a key milestone the theory of
adhesive categories as introduced by Lack and Sobocinski in the early 2000s [13], the categorical
approach to rewriting permits to treat a vast variety of systems of practical and theoretical interest,
and is the de facto standard approach in this field.

Contrary to existing projects aimed at formalizingmathematical concepts such as category theory
itself via theorem provers such as *Q[ [6], Ab�#2HH2f>PG [15] or G2�M [14], a peculiarity of categor-
ical rewriting resides in the nature of lemmata and proofs in this formalism, which is characterized
as being heavily based upon a diagrammatic calculus on commutative diagrams. This poses the
intriguing challenge of developing a suitable approach to profit from this highly modularized type of
mathematical reasoning also within the strategy to formalization within Coq, as well as the design
principle for interacting with Coq in a diagram-based form.

The key vision of this project is to assemble a team of domain experts as well as an international
online interest group targeted at developing and curating an interactive, Coq-enabled Wiki system
for categorical rewriting theory, aimed at both certifying and curating the knowledge in this research
field in a modern, openly accessible format.

a Objectives and scientific hypotheses

Work Package 1: Foundations and core engine

Task 1.1: Development of a methodology for diagrammatic reasoning in Coq. One of the key tech-
niques in formulating and proving statements in categorical rewriting theories is a certain type of
calculus on commutative diagrams. Fixing a suitable ambient category within which the given class
of rewriting systems is formulated, a number of crucial technical properties are made available, such
as certain statements on existence and nature of pushout squares (e.g. stability of monomorphisms),
certain subdivisibility properties of commutative squares or even three-dimensional statements such
as the van Kampen property (which entails certain statements about commutative cubes). Inspect-
ing the statement of proofs such as of the concurrency theorems, it is evident that a well-adapted
formalization of categorical rewriting theory within Coq should ideally be based upon a form of di-
agrammatic reasoning approach that closely follows the practice in the field. Contrary to existing
category theory libraries, we posit that an approach based upon the notion of sketches [1] (PAM?)
and on a carefully adapted usage of sigma-types in the spirit of [16] will permit a modularized ap-
proach to verifying commutative diagram based reasoning in Coq.

Task 1.2: Formalization (in Coq) and certification of a representative collection of axioms and theo-
rems for categorical rewriting theory. Taking the representative collection of axioms, lemmata and
theorems for compositional categorical rewriting theory as presented in [3, 5] as a starting point, we
aim to formalize a consistent corpus of formal knowledge in this field via our novel diagrammatic rea-
soning approach. This corpus should contain an encoding of suitable types of base categories (i.e.,
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Partner Last name First name Position Tasks Involvement
Université Paris Cité BEHR Nicolas CNRS CR SC 1.1, 1.2, 3.1, 3.2 16 p.m

GALLEGO Emilio Inria SRP 1.1, 2.1, 2.2 10 p.m
GHEERBRANT Amélie MdC 2.1 1 p.m
HERBELIN Hugo Inria DR 1.1, 1.2 7 p.m
MELLIÈS Paul-André CNRS DR 1.1, 1.2, 3.2 14 p.m
ROGOVA Alexandra PhD st. 2.1 1 p.m
PhD student (to recruit) 36 p.m

ENS-Lyon HARMER Russell CNRS CR LC 1.1, 1.2, 3.1, 3.2 16 p.m
HIRSCHOWITZ Tom CNRS DR 1.1, 3.2 5 p.m
POUS Damien CNRS DR 1.1, 1.2 8 p.m
PostDoc (to recruit) 24 p.m

École Polytechnique MIMRAM Samuel PR 1.1, 2.2, 3.2 4 p.m
WERNER Benjamin PR LC 2.1, 2.2 4 p.m
ZEILBERGER Noam MdC 1.1, 1.2, 3.2 5 p.m
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TASSI Enrico Inria CR 1.2 4 p.m
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Cambridge University LAFONT Ambroise PostDoc external consultant

Table 1. Persons involved in the project (SC – scientific coordinator; LC – local coordinator).
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a Objectives and scientific hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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b Position of the project as it relates to the state of the art . . . . . . . . . . . . . . . . . . . . . . . 8
c Methodology and risk management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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III Impact and benefits of the project 19

References 19

Changes between the pre-proposal and the detailed proposal

In order to accommodate for minor changes in the budget estimates for personnel costs since the
pre-proposal phase, the budget was adjusted by a 0.5% increase compared to the originally re-
quested budget. Furthermore, we have added Ambroise Lafont as an external consultant to the list
of persons involved in the project, as his YADE diagram editor prototype will serve as the basis for
our coreact.workbench developments (cf. WP 1 and WP 2).
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Main objectives of the CoREACT/GReTA ExACT initiative

• Development of a methodology for diagrammatic reasoning in Coq 
• Formalization (in Coq) and certification of a representative collection of 

axioms and theorems for compositional categorical rewriting theory 
• Development of a Coq-enabled interactive database and wiki system 
• Development of a CoREACT wiki-based “proof-by-pointing” engine 
• Executable reference prototype algorithms from categorical structures in 

Coq (via the use of SMT solvers/theorem provers such as Z3)
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(semi-) automatic cross-linking 
provided via NNexus system 

LaTeX sources 
(hosted on GitHub)

• J. Lurie’s online textbook on 
categorical homotopy theory 

• technology based upon online 
tags view via the Gerby system
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PDF textbook

(graph-) database

knowledge graphs

wiki entry (e.g., a Lemma)

#hash (auto-generated) 

Tags 
list of cross-references 
bibliographic references 
code origin references

LaTeX-based (e.g. via sTeX + Gerby), with annotations 
permitting generation of cross-references via NNexus

Human-readable text

Machine-readable Coq-formalisation

Examples (both maths & Coq)

Proof tactics and performance data 

Including compatible Coq version and possibly different 
variants for (1) different Coq versions and/or (2) different 
implementation strategies/frameworks/theories.

Curated in jsCoq, directly executable from within the 
wiki entry in the form of a literate web document and/or 
as a bundle of a Coq file with instructions for a 
particular Docker image for Coq.

Machine-learned tactics data, cross-evaluation of 
performance of different variants of implementations, user 
annotations on different Coq versions/libraries used

CoREACT Coq library
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Category theory

•Special types of categories: 
•adhesive/quasi-adhesive/adhesive HLR/weak adhesive HLR/… 
•quasi-topoi 

•Double categories 
•Universal constructions: 

• stable systems of monics, factorisation systems, multi-sums, … 
•pushouts, pullbacks, final pullback complements, multi-initial pushout 
complements, final pullback complement augmentations, … 

•Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations … 
•Lemmata on special properties of universal constructions: 

• (De-)composition properties 
• fibrational properties 
•Beck-Chevalley conditions

Diagrammatic reasoning

Foundations of compositional rewriting theory

•Compositional rewriting double categories (crDCs) 
•Concurrency Theorems 
•Associativity Theorems 
•Rule Algebra and Stochastic Mechanics 
•Tracelet Hopf Algebras and Decomposition Spaces

Collection of rewriting semantics

•Double Pushout/Sesqui-Pushout/Single-Pushout/AGREE/PBPO+/… 
• linear/input-linear/output-linear/non-linear/… 

•Theory of constraints and application conditions: 
•nested application conditions 
•constraint-guaranteeing/-preserving semantics 

•Compositional rewriting for rules with conditions 
• shift and transport constructions 
•Concurrency and associativity theorems 
•Rule algebras/stochastic mechanics/tracelets/…

Executable Applied Category theory (ExACT)

•Constructive characterization of categories with adhesivity/quasi-topoi: 
•Artin gluing/slice/coslice/product/sum/functor and comma categories/… 
•collection of practically relevant examples (Graph as presheaf topos, 
SimpleGraph via Artin gluing, HyperGraph as comma category, …) 

•Translation from rewriting semantics to SMT solvers/theorem provers 
•Reference prototype algorithms for concrete rewriting semantics

•Commutative diagrams 
•Reasoning moves 

• from universal properties 
• from diagrammatic lemmata 

•Compositionality of reasoning moves

Formalisations for coreact.workbench
•Auxiliary tactics to convert between drawings and Coq expressions 
•From drawing transformations to reasoning moves 
•From drawing transformations to Cypher queries



CoREACT — Nicolas Behr, Coq WG session on User Interfaces, January 31, 2023

coreact.wiki

http://coreact.wiki


AAPG2022 CoREACT PRC
Coordinated by: Nicolas Behr 48 months 400000 e
E.1 — Foundations of digital technology: computer science, automatic, signal processing

CoREACT
Coq-based Rewriting: towards Executable Applied Category Theory
Consortium: IRIF (UP), LIP (ENS-Lyon), LIX (École Polytechnique), Sophia-Antipolis (Inria)

I Pre-proposal’s context, positioning and objective(s)

The advent of the applied category theory (ACT) paradigm as well as large-scale projects for formal-
izing mathematics via theorem provers (math-comp, math-classes, ....) offers an intriguing possibility
for interdisciplinary research in the theoretical sciences. We propose to apply these paradigms to a
research area in theoretical computer science that is ideally suited: the theory of compositional cat-
egorical rewriting, the modern generalization of the algebraic approach to graph rewriting.Starting
from the pioneering work of Ehrig et al. in the early 1970s [8], with a key milestone the theory of
adhesive categories as introduced by Lack and Sobocinski in the early 2000s [13], the categorical
approach to rewriting permits to treat a vast variety of systems of practical and theoretical interest,
and is the de facto standard approach in this field.

Contrary to existing projects aimed at formalizingmathematical concepts such as category theory
itself via theorem provers such as *Q[ [6], Ab�#2HH2f>PG [15] or G2�M [14], a peculiarity of categor-
ical rewriting resides in the nature of lemmata and proofs in this formalism, which is characterized
as being heavily based upon a diagrammatic calculus on commutative diagrams. This poses the
intriguing challenge of developing a suitable approach to profit from this highly modularized type of
mathematical reasoning also within the strategy to formalization within Coq, as well as the design
principle for interacting with Coq in a diagram-based form.

The key vision of this project is to assemble a team of domain experts as well as an international
online interest group targeted at developing and curating an interactive, Coq-enabled Wiki system
for categorical rewriting theory, aimed at both certifying and curating the knowledge in this research
field in a modern, openly accessible format.

a Objectives and scientific hypotheses

Work Package 1: Foundations and core engine

Task 1.1: Development of a methodology for diagrammatic reasoning in Coq. One of the key tech-
niques in formulating and proving statements in categorical rewriting theories is a certain type of
calculus on commutative diagrams. Fixing a suitable ambient category within which the given class
of rewriting systems is formulated, a number of crucial technical properties are made available, such
as certain statements on existence and nature of pushout squares (e.g. stability of monomorphisms),
certain subdivisibility properties of commutative squares or even three-dimensional statements such
as the van Kampen property (which entails certain statements about commutative cubes). Inspect-
ing the statement of proofs such as of the concurrency theorems, it is evident that a well-adapted
formalization of categorical rewriting theory within Coq should ideally be based upon a form of di-
agrammatic reasoning approach that closely follows the practice in the field. Contrary to existing
category theory libraries, we posit that an approach based upon the notion of sketches [1] (PAM?)
and on a carefully adapted usage of sigma-types in the spirit of [16] will permit a modularized ap-
proach to verifying commutative diagram based reasoning in Coq.

Task 1.2: Formalization (in Coq) and certification of a representative collection of axioms and theo-
rems for categorical rewriting theory. Taking the representative collection of axioms, lemmata and
theorems for compositional categorical rewriting theory as presented in [3, 5] as a starting point, we
aim to formalize a consistent corpus of formal knowledge in this field via our novel diagrammatic rea-
soning approach. This corpus should contain an encoding of suitable types of base categories (i.e.,
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1
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r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001
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↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·
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1:1

r2 r1

r0021

r002 r001
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem — PROOF

• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?
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r02 r01

r02⇧r01

1:1

r2 r1
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·
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· ⌥ ·

· · ·

r1
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r2
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Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.
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⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Associativity Theorem (= Thm. 9 in FCRT)

3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·

⌃

· ⌥ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

↵003

↵21

↵2 ↵1

(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
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N ⌅
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r21

n m
r021

↵21

: 9
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·

⌃

· ⌥ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003
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↵003

↵21
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(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).
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The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in
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there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
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the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
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analysis part of the concurrency theorem, obtaining squares ↵02 and ↵01 from ↵21:

· · · · · ·

�

· • ·

⌃

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

r002 r001

↵003

↵21

↵2 ↵1

↵02 ↵01

(50)

Next, we apply a part of the synthesis construction of the concurrency theorem, in that we synthesize from the
squares ↵003 and ↵02 ⇧v ↵2 a composite of rules r3 and r2 (as encoded via the squares �3 and �2, with the composite rule
itself omitted for clarity) and squares �03 and �02 such that ↵003 = �

0
3 ⇧v �3 and ↵02 ⇧v ↵2 = �02 ⇧v �2:

· · · · · ·

⇤ �

· ⌅ ·

· • ·

⌃

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

↵003

↵2

↵1

↵02 ↵01

�3

�03

�2

�02

(51)

We now apply the following sequence of manipulations to obtain the diagram in (52):

• Since D0 has multi-sums, the cospan dom(r2) ⇢ ⌦ � codom(r1) factors uniquely up to isomorphisms into a
cospan dom(r2) ⇢ 4� codom(r1) and a mediating morphism 4⇢ ⌦.

• Via the multi-sum extension Lemma, there exists a D0 morphism �⇢ 4 between the multi-sum objects � and 4
(and analogously between the multi-sum objects ⇤ and ⌃, albeit this is irrelevant for the proof and thus omitted
from the diagrams).

• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue 4⇢ N (marked ?),
a D0-morphism N ⇢ ⌦ and squares �1 and �01 such that ↵01 ⇧v ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, the previously described operation induces squares
�2 and �02 such that �02 ⇧v �2 = �02, and �3 and �03 such that �03 ⇧v �3 = �03.
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· · · · · ·

⇤ �

· ⌅ ·

4

· • ·

::: :: ⌃ N :

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

?

↵003

↵2

↵1

↵02 ↵01

�3

�03

�2

�02
�3

�03

�2

�02

�1

�01

(52)

For the final step of the) part of the proof, we construct the diagram in (53) below via the following steps:

• Take a pullback (admissible since D0 has pullbacks) in order to obtain the object marked ; on the back rightmost
part of the diagram in (53), yielding a number of morphisms as indicated; since D0 morphisms are stable under
pullback, and pullbacks in D0 are e↵ective, all of the morphisms formed in this step are in D0.

• Since the source functor is a multi-opfibration, by applying the pullback splitting lemma for multi-opfibrations
we obtain squares �1, �01 and "1 such that ↵1 = "1 ⇧v �1 and �1 = �01 ⇧v �1. The lemma also implies that since
the square from the object marked ; was by construction a pullback, so is the square from O, which by the
universal property of pullbacks yields the existence of a morphism into O (marked +), which is by e↵ectiveness
of pullbacks a D0 morphism.

• Applying the pullback splitting lemma for multi-opfibrations once again, we may obtain the configuration in
the middle of the diagram in (53), i.e., squares �2, �02 and "2 such that ↵2 = "2 ⇧v �2 and �02 ⇧v �2 = �02 ⇧v �2. The
lemma also entails that since the commutative square from O is a pullback, the square from the object marked
; ; is a pullback, too, and there exists the D0 morphism codom(r2) ⇢; ;.

• By the universal property of residues, since ↵1 = "1 ⇧v �1, and since the residue � ⇢ • marked ? (which
forms the second factor of of T (↵1)) factors through O ⇢ • (i.e., through T ("1)), we find that the square "1 is a
(vertical) isomorphism. By the lifting property of isomorphisms in multi-opfibrations, the square "2 is then an
isomorphism, too.

• The latter point entails that there exists a D0 morphism ⌃ ⇢::, which together with ↵02 ⇧h ↵01 = (�2 ⇧h �1) ⇧v
(�02 ⇧h �01) implies via the universal property of residues that the squares �2 and �1 are (vertical) isomorphisms,
and thus by the lifting property of isomorphisms in multi-opfibrations, so is �3. This concludes the proof of the
) part of the theorem.
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· · · · · ·

⇤ �

· ⌅ ·

4

; ; O ;

· • ·

::: :: ⌃ N :

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

?

⇥

+

↵003

↵2

↵1

↵02
↵01

�3

�03

�2

�02�3

�03

�2

�02

�1

�01

�1

�01

"1

�2

�02

"2

(53)
For the( part of the claim, let us yet again invoke the analysis part of the concurrency theorem in order to exhibit

a decomposition of the form ↵32 = ↵03 ⇧h ↵02 as in (54).

· · · · · ·

⇤

· ⌅ ·

4

· :: N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001
r0032

r002r003

↵32

↵3 ↵2

↵001

↵03 ↵02

(54)

To proceed, we may now apply the synthesis part of the concurrency theorem to the sequence of composite squares
↵02 ⇧v ↵2 and ↵01 ⇧v ↵1, again not explicitly carrying out the horizontal composition of squares in the last step of the
construction. We thus arrive at a diagram as in (55) below, with the squares �1, �01, �2 and �02 arising from the
aforementioned construction (where the existence of the D0 morphism �⇢ • follows from the multi-sum extension
Lemma):

· · · · · ·

⇤ �

· • ·

· ⌅ ·

4

· :: N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001
r0032

r002r003

?

↵32

↵3

↵2

↵001

↵03 ↵02

�2

�02

�1

�01

(55)

37

crDCs satisfy a (universal!) Associativity Theorem — PROOF SKETCH


