
41

Top-Down Synthesis for Library Learning

MATTHEW BOWERS,Massachusetts Institute of Technology, USA
THEO X. OLAUSSON,Massachusetts Institute of Technology, USA
CATHERINE WONG,Massachusetts Institute of Technology, USA
GABRIEL GRAND,Massachusetts Institute of Technology, USA
JOSHUA B. TENENBAUM,Massachusetts Institute of Technology, USA
KEVIN ELLIS, Cornell University, USA
ARMANDO SOLAR-LEZAMA,Massachusetts Institute of Technology, USA

This paper introduces corpus-guided top-down synthesis as a mechanism for synthesizing library functions that
capture common functionality from a corpus of programs in a domain specific language (DSL). The algorithm
builds abstractions directly from initial DSL primitives, using syntactic pattern matching of intermediate
abstractions to intelligently prune the search space and guide the algorithm towards abstractions thatmaximally
capture shared structures in the corpus. We present an implementation of the approach in a tool called Stitch
and evaluate it against the state-of-the-art deductive library learning algorithm from DreamCoder. Our
evaluation shows that Stitch is 3-4 orders of magnitude faster and uses 2 orders of magnitude less memory
while maintaining comparable or better library quality (as measured by compressivity). We also demonstrate
Stitch’s scalability on corpora containing hundreds of complex programs that are intractable with prior
deductive approaches and show empirically that it is robust to terminating the search procedure early—further
allowing it to scale to challenging datasets by means of early stopping.

Additional Key Words and Phrases: Program Synthesis, Library Learning, Abstraction Learning

ACM Reference Format:

Matthew Bowers, Theo X. Olausson, Catherine Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis,
and Armando Solar-Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7,
POPL, Article 41 (January 2023), 42 pages. https://doi.org/10.1145/3571234

1 INTRODUCTION

One way programmers manage complexity is by hiding functionality behind functional abstractions.
For example, consider the graphics programs at the bottom of Fig. 1A. Each uses a generic set of
drawing primitives and renders a technical schematic of a hardware component, shown to the left
of each program. Faced with the task of writing more of these rendering programs, an experienced
human programmer likely would not continue using these low-level primitives. Instead, they would
introduce new functional abstractions, like the one at the bottom of Fig. 1B which renders a regular
polygon given a size and number of sides. Useful abstractions like these allow more concise and

Authors’ addresses: Matthew Bowers, Massachusetts Institute of Technology, Cambridge, MA, USA, mlbowers@mit.edu;
Theo X. Olausson, Massachusetts Institute of Technology, Cambridge, MA, USA, theoxo@mit.edu; Catherine Wong,
Massachusetts Institute of Technology, Cambridge, MA, USA, catwong@mit.edu; Gabriel Grand, Massachusetts Institute
of Technology, Cambridge, MA, USA, grandg@mit.edu; Joshua B. Tenenbaum, Massachusetts Institute of Technology,
Cambridge, MA, USA; Kevin Ellis, Cornell University, Ithaca, NY, USA; Armando Solar-Lezama, Massachusetts Institute of
Technology, Cambridge, MA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART41
https://doi.org/10.1145/3571234

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571234

41:2 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

A.

learned_fn_0 =
(λx. λy. (transform
(repeat (transform line
(matrix 1 0 -0.5 (/ 0.5
(tan (/ pi x))))) x
(matrix 1 (/ (* 2 pi)
x) 0 0)) (matrix y 0 0
0))))

Draws polygons parameterized by
number of sides and side length

Initial DSL

Corpus of programs in the
initial DSL

B.
STITCH uses corpus-driven top-down synthesis to
find new abstractions that can compress the corpus of
program trees

C.
Learned library with new
abstractions

Compressed corpus of programs
rewritten with the library

connect | transform | matrix |
circle | line | 0 | 1 | 2 ..

(connect (connect
(transform (repeat
(transform line (matrix
1 0 -0.5 (/ 0.5 (tan (/
pi 8))))) ...

(connect (connect
(transform (transform
circle (matrix 2 0 0
0))(transform ...)

(connect (connect
(transform (repeat
(transform line (matrix
1 0 -0.5 (/ 0.5 (tan (/
pi 6))))) ...

??

connect | transform | matrix |
circle | line | 0 | 1 | 2
learned_fn_0 | learned_fn_1 |
learned_fn_2...

??

λ circle

...

...

...

(connect (connect
(learned_fn_0 8 1) ..)

(connect (connect
(transform (transform
circle (matrix 2 0 0
0))(transform ...)

(connect (connect
(learned_fn_0 6 1) ..)

?? ??

...

app line

Fig. 1. (A) Given an initial DSL of lower-level primitives and a corpus of programs written in the initial

DSL, (B) Stitch uses a fast and memory efficient corpus-guided top-down search algorithm to construct

function abstractions which maximally capture shared structure across the corpus of programs. (C) Stitch

automatically rewrites the initial corpus using the learned library functions.

legible programs to render the existing schematics. More importantly, well-written abstractions
should generalize, making it easier to write new graphics programs for similar graphics tasks.

Recently, the program synthesis community has introduced new approaches that can mimic this
process, automatically building a library of functional abstractions in order to tackle more complex
synthesis problems [Dechter et al. 2013; Ellis et al. 2020, 2021; Lázaro-Gredilla et al. 2019; Shin
et al. 2019]. One popular approach to library learning is to search for common tree fragments
across a corpus of programs, which can be introduced as new abstractions [Dechter et al. 2013;
Lázaro-Gredilla et al. 2019; Shin et al. 2019]. Ellis et al. 2021, however, introduces an algorithm
that reasons about variable bindings to abstract out well-formed functions instead of just tree
fragments. While it produces impressive results, the system in Ellis et al. 2021 takes a deductive
approach to library learning that is difficult to scale to larger datasets of longer and deeper input
programs. This approach is deductive in that it uses semantics-preserving rewrite rules to attempt
to refactor existing programs to expose shared structure. This requires representing and evaluating
an exponentially large space of proposed refactorings to identify common functionality across
the corpus. Prior work, such as Ellis et al. 2020, 2021, approaches this challenge by combining a
dynamic bottom-up approach to refactoring with version spaces to more efficiently search over
the refactored programs. However, these deductive approaches face daunting memory and search
requirements as the corpus scales in size and complexity.
This paper introduces an alternate approach to library learning, while preserving the focus on

well-formed function abstractions from Ellis et al. 2021. Instead of taking a deductive approach
based on refactoring the corpus with rewrite rules, we directly synthesize abstractions. We call this
approach corpus-guided top-down synthesis, and it is based on the insight that when applied to the
task of synthesizing abstractions, top-down search can be guided precisely towards discovering
shared abstractions over a set of existing training programs. At every step of the search, syntactic
comparisons between a partially constructed abstraction and the set of training programs can be

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:3

used to strongly constrain the search space and direct the search towards abstractions that capture
the greatest degree of shared syntactic structure.

We implement this approach in Stitch, a corpus-guided top-down library learning tool written
in Rust (Fig. 1). Stitch is open-source and offers both Python and Rust bindings; the code, bindings,
and tutorial are available on the GitHub1. We evaluate Stitch through a series of experiments
(Section 6), and find that: Stitch learns libraries of comparable quality to those found by the
algorithm of Ellis et al. 2021 on their iterative bootstrapped library learning task, while being 3-4
orders of magnitude faster and using 2 orders of magnitude less memory (Section 6.1); Stitch
learns high quality libraries within seconds to single-digit minutes when run on corpora containing
a few hundred programs with mean lengths between 76–189 symbols (sourced from Wong et al.
2022), while even the simplest of these corpora lies beyond the reach of the algorithm of Ellis et al.
2021 (Section 6.2); and that Stitch degrades gracefully when resources are constrained (Section 6.3).
We also perform ablation studies to expose the relative impact of different optimizations in Stitch
(Section 6.4). Finally, we show that Stitch is complementary to deductive rewrite approaches
(Section 6.5).

In summary, our paper makes the following contributions:

(1) Corpus-guided top-down synthesis (CTS): A novel, strongly-guided branch-and-bound
algorithm for synthesizing function abstractions (Sec. 3).

(2) CTS for program compression: An instantiation of the CTS framework for utility functions
favoring abstractions that compress a corpus of programs (Sec. 4).

(3) Stitch: A parallel Rust implementation of CTS for compression that achieves 3-4 orders
of magnitude of speed and memory improvements over prior work, and the analysis of its
performance, scaling, and optimizations through several experiments (Sec. 6).

2 OVERVIEW

In this section, we build intuition for the algorithmic insights that power Stitch. As a running
example, we focus on learning a single abstraction from the following corpus of programs:

𝜆𝑥. + 3 (* (+ 2 4) 2)

𝜆𝑥𝑠. map (𝜆𝑥. + 3 (* 4 (+ 3 x))) xs

𝜆𝑥. * 2 (+ 3 (* x (+ 2 1)))

(1)

The notion of what a good abstraction is depends on the application, so our algorithm is generic
over the utility function that we seek to maximize. Following prior work [Dechter et al. 2013; Ellis
et al. 2021; Shin et al. 2019] we focus on compression as a utility function: a good abstraction is one
which minimizes the size of the corpus when rewritten with the abstraction. The utility function
used by Stitch is detailed in Section 4 and corresponds exactly to the compression objective, but
at a high level the function seeks to maximize the product of the size of the abstraction and the
number of locations where the abstraction can be used. This product balances two key features of a
highly compressive abstraction: the abstraction should be general enough that it applies in many
locations, but specific enough that it captures a lot of structure at each location.

The optimal abstraction that maximizes our utility in this example is:

fn0 = 𝜆𝛼. 𝜆𝛽.(+ 3 (* 𝛼 𝛽)) (2)

1https://github.com/mlb2251/stitch

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://github.com/mlb2251/stitch

41:4 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

+ 3

*

+ 3 ??

𝛽

𝛼

+ 5 ??

+ ????

????

??

??

λ
3 + 𝛼 ...

...

...

...

...

+ 3

*

+ 2
4

2

Complete
Abstraction

Partial
Abstraction

Partial
Abstraction

...
Enlarged

view

A. B.

app

app

app

app

app

app

app

app

app

app

app

app

app

app

app

app

app

Fig. 2. (A) Schematic of corpus-guided top-down search (CTS). Partial abstractions can contain holes indicating
unfinished subtrees, denoted ??, while complete abstractions do not contain holes. (B) Partial and complete

abstractions match at locations in the corpus. The blue partial abstraction can be expanded into the green

complete abstraction so the green abstraction matches in a subset of places that the blue abstraction does.

For complete abstractions, matching indicates that the subtree can be rewritten to use the abstraction.

And the shared structure that this abstraction captures is highlighted in blue in Eq. (1). When
rewritten to use this abstraction, the size of the resulting programs is minimized:

𝜆𝑥 . fn0 (+ 2 4) 2

𝜆𝑥𝑠. map (𝜆𝑥. fn0 4 (+ 3 x)) xs

𝜆𝑥 . * 2 (fn0 x (+ 2 1))

(3)

Stitch synthesizes the optimal abstraction directly through top-down search. Top-down search
methods construct program syntax trees by iteratively refining partially-completed programs that
have unfinished holes, until a complete program that meets the specification is produced [Balog
et al. 2016; Ellis et al. 2021; Feser et al. 2015; Nye et al. 2021; Polikarpova et al. 2016; Shah et al.
2020]. This kind of search is often made efficient by identifying branches of the search tree that
can be pruned away because the algorithm can efficiently determine that none of the programs in
that branch can be correct. We aim to apply a similar idea to the problem of synthesizing good
abstractions; the idea is to explore the space of functions in the same top-down way, but in search
of a function that maximizes the utility measure. The key observation is that this new objective
affords even more aggressive pruning opportunities than the traditional correctness objective,
allowing us to synthesize optimal abstractions very efficiently. We call this approach corpus-guided

top-down search (CTS).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:5

Corpus-Guided Top-Down Search. Like other top-down synthesis approaches, our algorithm
explores the space of abstractions by repeatedly refining abstractions with holes, as illustrated in
Fig. 2A. We call abstractions with holes partial abstractions in contrast to complete abstractions

which have no holes. Our top-down algorithm searches over abstraction bodies, so to synthesize
the optimal abstraction fn0 in our running example, we synthesize its body: (+ 3 (* 𝛼 𝛽)).

We say that a partial abstractionmatches at a subtree in the corpus if there’s a possible assignment
to the holes and arguments that yields the subtree. For example, consider the subtree (+ 3 (* (+ 2
4) 2) from the first program in our running example, shown as a syntax tree at the bottom of figure
2B. The partial abstraction (+ 3 ??) shown in bluematches herewith the hole ?? = (* (+ 2 4) 2),
and the complete abstraction (+ 3 (* 𝛼 𝛽)) matches here with 𝛼 = (+ 2 4) and 𝛽 = 2. For
complete abstractions, matching corresponds to being able to use the abstraction to rewrite this
subtree, resulting in compression. We refer to the set of subtrees at which a complete or partial
abstraction matches as the set of match locations. For example, the three match locations of (+ 3
(* 𝛼 𝛽)) are the subtree (+ 3 (* (+ 2 4) 2)) in the first program, (+ 3 (* 4 (+ 3 x))) in
the second program, and (+ 3 (* x (+ 2 1))) in the third program.
In traditional top-down synthesis, a branch of search can be safely pruned by proving that a

program satisfying the specification cannot exist in that branch. In CTS, we can safely prune a
branch of search if we can prove that it cannot contain the optimal abstraction. One way to prove
this is by computing an upper bound on the utility of abstractions in the branch, and discarding
the branch if we have previously found an abstraction with a utility that is higher than this bound.
An efficient and conservative way to compute this upper bound is to overapproximate the set of
match locations, then upper bound the compressive utility gain from each match location.

Our key observation to compute this bound is that during search, expanding a hole in a partial
abstraction yields an abstraction that is more precise and thus matches at a subset of the locations
that the original matched at. This subset observation is depicted in Fig. 2 where the refinement
of the partial abstraction (+ 3 ??) (blue) to the goal (+ 3 (* 𝛼 𝛽)) (green) results in a larger
abstraction that matches at a subset of the locations (match locations shown at the top of Fig. 2B).
An important consequence of this is that the match locations of a partial abstraction serves as an
over-approximation of the match locations of any abstraction in this branch of top-down search.

To upper bound the compressive utility gained by rewriting at a match location, notice that the
most compressive abstraction that matches at a subtree is the constant abstraction corresponding
to the subtree itself. For example, the largest possible abstraction at (+ 3 (* (+ 2 4) 2) is just
(+ 3 (* (+ 2 4) 2). In other words, the size of the subtree is a strict upper bound on how much
compression can be achieved at a match location. Thus we get the upper bound for some partial
abstraction 𝐴??:

𝑈upperbound (𝐴??) =
∑︁

𝑒∈matches(𝐴??)
size(𝑒) (4)

Equipped with this bound, our algorithm performs a branch-and-bound style top-down search,
where at each step of search it discards all partial abstractions that have utility upper bounds that
are less than the utility of the best complete abstraction found so far.
Our full algorithm presented in Section 3 has some additional complexity. It handles rewriting

in the presence of variables soundly, it uses an exact utility function that accounts for additional
compression gained by using the same variable in multiple places, and it handles situations where
match locations overlap and preclude one another. We also introduce two other important forms
of pruning while maintaining the optimality of the algorithm, and we use the upper bound as a
heuristic to prioritize more promising branches of search first.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:6 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

�%� 5HZULWLQJ�ZLWK�DEVWUDFWLRQV�$� /HDUQLQJ�DEVWUDFWLRQV

«

AI¼¾

AI¼¿ �AI¼¿�Ã�¼��AI¼»�>�Á Ï AI¼¿

AI¼

AI½

AI¾

�������AI»�¿�Ã ��AI½�¼ �
�AI¼�>�¼�À�Á����¼�����¥�½�KD �
Á �»�»

Ï AI½

AI»

�������AI»�¿�Ã �������>����½�»�»�» ����¼�»�
»�» ��M@K@<O�������>����»�À�»�»�» ����¼�»�
�¥�¼�À��>JN����KD�¿ ��¥�¼�À��NDI����KD�
¿ �Á����¼�����¥�½�KD �Á �»�»

Ï AI»

«
«

����������M@K@<O����G����¼�»��»�À����»�À��O<I����KD�Ã �
Ã����¼�����¥�½�KD �Ã �»�» ����¿�»�»�» �������>����½�»�»�
» ����¼�»�»�» ��M@K@<O�������>����»�À�»�»�» ����¼�»��¥�
¼�À��>JN����KD�¿ ��¥�¼�À��NDI����KD�¿ �Á����¼�����¥�
½�KD �Á �»�»

�<N@�
���

AIÁ

AIÂ

AIÃ

�AIÂ�¼��AI»�¿�Ã �
�AIÁ�¼�À�>�Á

Ï AIÂ

NC<K@N
>��>DM>G@
M��M@>O<IBG@
G��GDI@

PODGDOT
���>JII@>O
���OM<INAJMH
���H<OMDS
M@K@<O

OMDBJIJH@OMT
>JN��>JNDI@
NDI��NDI
KD��KD

<GB@=M<
Ï��<??
���NP=OM<>O
¥��HPGODKGT
���?DQD?@

�MDHDODQ@N

�><G@?���BJI

�><G@?�>DM>G@

�><G@?�>DM>G@�I@NO@?�DIND?@�B@I@MD>�NC<K@

�><G@?�>DM>G@�I@NO@?�DIND?@�G@IBOC�¿���BJI

«

Fig. 3. Visualization of Stitch library learning on the nuts-bolts subdomain from Wong et al. 2022. (A) From

the base DSL primitives (top row), Stitch iteratively discovers a series of abstractions that compress programs

in the domain. Arrows demonstrate how abstractions from selected iterations build on one another to achieve

increasingly higher-level behaviors. (B) Rewriting a single item from the domain with the cumulative benefit

of discovered abstractions yields increasingly compact expressions. Colors indicate correspondence between

object parts and program fragments: orange = outer octagon, green = ring of six circles, purple = inner circle.

Building Up Abstraction Libraries. The top-down search algorithm described above yields a
single abstraction. However, we can easily run this algorithm for multiple iterations on a corpus of
programs to build up an entire library of abstractions. Fig. 3 illustrates the power of this kind of
iterative library learning, which interleaves compression and rewriting. At each iteration, Stitch
discovers a single abstraction that is used to rewrite the entire corpus of programs. Successive
iterations therefore yield abstractions that build hierarchically on one another, achieving increas-
ingly higher-level behaviors. As the library grows to contain richer and more complex abstractions,
individual programs shrink into compact expressions.

Structure of the Paper. In the subsequent sections, we formalize our corpus-guided top-down
search algorithm (Section 3), its application to the problem of compression (Section 4), and how
it may be layered on top of data structures such as version spaces (Section 5). We then report
experimental results (Section 6) showcasing both diverse library learning settings as well as ablations
of Stitch’s search mechanisms. Finally, we conclude by situating Stitch within the landscape of
related work (Section 7) and future work (Section 8) in the areas of library learning and program
synthesis.

3 CORPUS-GUIDED TOP-DOWN SEARCH

We first provide the definitions necessary to understand our problem then introduce our algorithm.

Grammar. Our algorithm operates on lambda-calculus expressions with variables represented
through de Bruijn indices [de Bruijn 1972]; expressions come from a context-free grammar of
the form 𝑒 F 𝜆. 𝑒 ′ | 𝑒 ′ 𝑒 ′′ | $𝑖 | 𝑡 , where 𝑡 ∈ Gsym refers to the set of built-in primitives in the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:7

domain-specific language. For example, in an arithmetic domain Gsym would include operators like
+ and constants like 3. We say that 𝑒 ′ is a subexpression of 𝑒 if 𝑒 = 𝐶 [𝑒 ′], where 𝐶 is a context as
defined in the contextual semantics of Felleisen and Hieb 1992. An expression is closed if it has no
free variables, in which case the expression is also a program. A set of programs P is a corpus.

When representing variables through de Bruijn indices, $𝑖 refers to the variable bound by the 𝑖th
closest lambda above it. Thus 𝜆𝑥 . 𝜆𝑦. (𝑥 𝑦) is represented as 𝜆. 𝜆. ($1 $0). Beta reduction with de
Bruijn indices requires upshifting: incrementing free variables in the argument when substitution
recurses into a lambda, since the free variables must now point past one more lambda. Similarly,
inverse beta reduction requires downshifting.

Abstraction. Given a grammar G, we define the abstraction grammar G𝐴 as G extended to
include abstraction variables, denoted by Greek letters 𝛼 , 𝛽 , etc. Formally, 𝐴 F 𝜆. 𝐴′ | 𝐴′ 𝐴′′ | $𝑖 |
𝑡 | 𝛼 where 𝑡 ∈ Gsym. A term 𝐴 from this grammar represents the body of an abstraction; e.g. the
abstraction 𝜆𝛼. 𝜆𝛽. (+ 𝛼 𝛽) is simply represented by the term (+ 𝛼 𝛽) from the language of G𝐴.

Partial Abstraction. A partial abstraction 𝐴?? is an abstraction that can additionally include
holes. A hole, denoted by ??, represents an unfinished subtree of the abstraction. Thus, 𝐴?? F 𝐴 |
?? | 𝜆. 𝐴′?? | 𝐴′?? 𝐴′′??. Any abstraction is thus also a partial abstraction. Given a grammar G, the
grammar of partial abstractions is denoted by G𝐴?? . Each hole in a partial abstraction 𝐴 can be
referred to by a unique index, which can be explicitly written as ??𝑖 .

Lambda-Aware Unification. We introduce lambda-aware unification as a modification of
traditional unification adapted to our algorithm. LambdaUnify(𝐴, 𝑒) returns a mapping (if one
exists) from abstraction variables and holes to expressions [𝛼𝑖 → 𝑒 ′𝑖 , . . . , ??𝑗 → 𝑢 ′𝑗 , . . .] such that

(𝜆𝛼𝑖 𝜆??𝑗 𝐴) 𝑒 ′𝑖 . . . 𝑢 ′𝑗 . . . = 𝑒 (5)

through beta reduction. A key difference from traditional unification is that the expression 𝑒 may
be deep inside a program written using de Bruijn indices, so LambdaUnify must perform some
index arithmetic in order to generate its output mapping; in particular, raising a subtree out of a
lambda during this inverse beta reduction requires downshifting variables in it.

The definition of LambdaUnify is presented in Fig. 4 (left). In U-App, merge(𝑙1, 𝑙2) merges two
[𝛼𝑖 → 𝑒𝑖] mappings to create a new mapping that includes all bindings from 𝑙1 and 𝑙2, and fails
if the same abstraction variable 𝛼 maps to different expressions in 𝑙1 and 𝑙2. The rule U-Same
applies only when the abstraction argument to LambdaUnify is an expression (i.e. it contains no
holes or abstraction variables) and is syntactically identical to the expression it is being unified
with. In U-Lam, DownshiftAll returns a new mapping with all abstracted expressions 𝑒 and hole
expressions 𝑢 downshifted using the ↓ operator presented in Fig. 4 (right). The ↓ operator has been
modified from traditional downshifting to allow for partial abstractions that contain holes ??𝑗 to
break the rules of variable binding, because holes represent unfinished subtrees of the abstraction.

In particular, a new syntactic form "&𝑖" is used to represent a $𝑖 variable that has been downshifted
further than traditional downshifting would permit. &𝑖 variables are created by ↓when a traditional
downshift would otherwise convert a free variable to a (different, incorrect) bound variable. These
variables represent references to lambdas present within the body of the abstraction and are allowed
in expressions 𝑢 ′𝑗 bound to holes but not expressions 𝑒 ′𝑖 bound to abstraction variables.

To account for &𝑖 variables, the beta reduction used in Eq. (5), which is defined in Fig. 5, uses a
modified upshift operator ↑ defined to be an inverse to the ↓ operator. With this modification of
beta reduction, any &𝑖 variables with negative indices will ultimately be shifted back to positive
indices during reduction. Furthermore, the beta reduction procedure is equivalent to traditional
beta reduction when there are no holes and thus no &𝑖 variables.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:8 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

U-AbsVar
LambdaUnify(𝛼, 𝑒) ⇝ [𝛼 → 𝑒]

U-Hole
LambdaUnify(??𝑖 , 𝑒) ⇝ [??𝑖 → 𝑒]

U-App

LambdaUnify(𝐴1, 𝑒1) ⇝ 𝑙1
LambdaUnify(𝐴2, 𝑒2) ⇝ 𝑙2

𝑙 = merge(𝑙1, 𝑙2)
LambdaUnify((𝐴1 𝐴2), (𝑒1 𝑒2)) ⇝ 𝑙

U-Lam

LambdaUnify(𝐴, 𝑒) ⇝ 𝑙′

𝑙 = DownshiftAll(𝑙′)
LambdaUnify((𝜆. 𝐴), (𝜆. 𝑒)) ⇝ 𝑙

U-Same
LambdaUnify(𝑒, 𝑒) ⇝ []

DownshiftAll([𝛼𝑖 → 𝑒′𝑖 , ??𝑗 → 𝑢′𝑗 , ...])
= [𝛼𝑖 → ↓0 𝑒

′
𝑖 , ??𝑗 → ↓0 𝑢

′
𝑗 , ...]

↓𝑑 𝜆.𝑏 = 𝜆. ↓𝑑+1 𝑏
↓𝑑 (𝑓 𝑥) = (↓𝑑 𝑓 ↓𝑑 𝑥)

↓𝑑 $𝑖 =

$𝑖, if 𝑖 < 𝑑

$(𝑖 − 1), if 𝑖 > 𝑑

&(𝑖 − 1), if 𝑖 = 𝑑

↓𝑑 &𝑖 = &(𝑖 − 1),
↓𝑑 𝑡 = 𝑡, if 𝑡 is a primitive (i.e. 𝑡 ∈ Gsym)

Fig. 4. (Left) Inference rules for lambda-aware unification. (Right) Definition of DownshiftAll.

(𝜆𝛼𝑖 𝜆??𝑗 𝐴) 𝑒′𝑖 . . . 𝑢′𝑗 . . .

= [𝛼𝑖 → 𝑒′𝑖 , ??𝑗 → 𝑢′𝑗 , ...] ◦𝐴

𝑙 ◦ 𝜆.𝑏 = 𝜆.UpshiftAll(𝑙) ◦ 𝑏
𝑙 ◦ (𝑓 𝑥) = (𝑙 ◦ 𝑓) (𝑙 ◦ 𝑥)
𝑙 ◦ $𝑖 = $𝑖
𝑙 ◦ 𝛼𝑖 = 𝑙 [𝛼𝑖]
𝑙 ◦ ??𝑖 = 𝑙 [??𝑖]
𝑙 ◦ 𝑡 = 𝑡, for 𝑡 ∈ Gsym

UpshiftAll([𝛼𝑖 → 𝑒′𝑖 , ??𝑗 → 𝑢′𝑗 , ...])
= [𝛼𝑖 → ↑0 𝑒

′
𝑖 , ??𝑗 → ↑0 𝑢

′
𝑗 , ...]

↑𝑑 𝜆.𝑏 = 𝜆. ↑𝑑+1 𝑏
↑𝑑 (𝑓 𝑥) = (↑𝑑 𝑓 ↑𝑑 𝑥)

↑𝑑 $𝑖 =

{
$𝑖, if 𝑖 < 𝑑

$(𝑖 + 1), if 𝑖 ≥ 𝑑

↑ &𝑖 =

{
&(𝑖 + 1), if 𝑖 + 1 ≠ 𝑑

$(𝑖 + 1), if 𝑖 + 1 = 𝑑

↑𝑑 𝑡 = 𝑡, for 𝑡 ∈ Gsym

Fig. 5. (Left) Definition of modified beta reduction and substitution (◦). (Right) Definition of UpshiftAll.

We provide a proof of the correctness of LambdaUnify with respect to Eq. (5) in Appendix B,
as well as a Coq proof of the correctness in stitch.v in the supplemental material. However, to
understand the key idea behind the proof we focus here on an example illustrating the different
cases involving the ↓ operator and &𝑖 indices. Consider what happens when you run

LambdaUnify(𝜆. 𝑓 ??0, 𝜆. 𝑒) (6)

By Eq. (5), the goal is to produce a mapping [??0 → 𝑢 ′0] such than when replacing ??0 with 𝑢 ′0 it
produces (𝜆. 𝑒). In other words, (𝜆. 𝜆. 𝑓 $1) 𝑢 ′0 = 𝜆. 𝑒 . Now, suppose

LambdaUnify(𝑓 ??0, 𝑒) ⇝ [??0 → 𝜆. $𝑖] (7)

This means that (𝜆. 𝑓 $0) (𝜆. $𝑖) = 𝑒 so 𝑒 = 𝑓 (𝜆. $𝑖). There are three possibilities for 𝑖 that need to
be considered, corresponding to the 3 cases in the definition of ↓𝑑 $𝑖 . In the first case, when 𝑖 = 0
and thus 𝑒 = 𝑓 (𝜆. $0), it means that $𝑖 in Eq. (7) is bound to the lambda in the return mapping. In
this case, DownshiftAll in U-Lam should not do anything because if we can replace ??0 with
(𝜆. $0) in (𝑓 ??0) to produce 𝑒 , the same replacement in (𝜆. 𝑓 ??0) will produce (𝜆. 𝑒).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:9

The second case is when 𝑖 ≥ 2; this means that 𝑒 has some variables that were defined outside of
it and they have been captured by ??0. For example, if 𝑖 = 2 and thus 𝑒 = 𝑓 (𝜆. $2), the solution
to Eq. (6) is [??0 → 𝜆. $1], since (𝜆. 𝜆. 𝑓 $1) (𝜆. $1) = 𝜆. 𝑒; in other words, when computing
LambdaUnify(𝜆. 𝑓 ??0, 𝜆. 𝑒) from Eq. (7), the $𝑖 in the return mapping has to be downshifted to
account for the fact that it will be substituted inside an additional lambda.
The third case, when 𝑖 = 1, is more problematic. In this case, we have that 𝑒 = 𝑓 (𝜆. $1). This

creates a problem, since there is no 𝑖 such that (𝜆. 𝜆. 𝑓 $1) (𝜆. $𝑖) = 𝜆. 𝑒 ; the $𝑖 needs to refer to the
lambda surrounding 𝑒 . The downshift operator addresses this through the special treatment of the
&𝑖 index.
LambdaUnify relates to prior work on unification modulo binders [Dowek et al. 1995, 1996;

Huet 1975; Miller 1991, 1992] but focuses on a more efficiently solvable syntax-driven subset of the
more general unification problems tackled in this prior work. We give a more detailed comparison
to this prior work in Section 7.

Match Locations. The set of match locations of a partial abstraction 𝐴?? in a corpus P, denoted
Matches(P, 𝐴??), is the maximal set of context-expression pairs {(𝐶1, 𝑒1), (𝐶2, 𝑒2), . . . , (𝐶𝑘 , 𝑒𝑘)}
such that ∀𝑘. 𝑝 = 𝐶𝑘 [𝑒𝑘] and 𝑝 ∈ P and LambdaUnify(𝑒𝑘 , 𝐴??) succeeds. We discard locations
where the mapping produced by LambdaUnify has &i indices in expressions bound by abstraction
variables, while we allow them in expressions bound by holes as holes are allowed to violate variable
binding rules. In Section 3.1 we explain how we maintain the set of matches incrementally.

Rewrite Strategies. A corpus P can be rewritten to use a complete abstraction 𝐴 as follows. We
introduce a new terminal symbol 𝑡𝐴 into the symbol grammar Gsym to represent the abstraction,
and consider it semantically equivalent to (𝜆𝛼0. ... 𝜆𝛼𝑘 . 𝐴). We then re-express P in terms of
𝑡𝐴 as follows. We can replace the match location (𝐶, 𝑒) ∈ Matches(P, 𝐴) with 𝑡𝐴 applied with
the argument assignments [𝛼𝑖 → 𝑒𝑖] = LambdaUnify(𝐴, 𝑒) to yield a semantically equivalent
expression, 𝐶 [(𝑡𝐴 𝑒0 ... 𝑒𝑘)]. Note that since this is a complete abstraction, it contains no holes.
One complication is that rewriting at one match location may preclude rewriting at another

match location if they overlap with each other. A rewrite strategy R is a procedure for selecting
a subset of Matches(P, 𝐴) to rewrite at, in which no match precludes another match. We refer
to this set as RewriteLocationsR (P, 𝐴). We refer to rewriting a corpus P under an abstraction
𝐴 with rewrite strategy R by RewriteR (P, 𝐴). We refer to rewriting at only a single particular
match location𝑚 with abstraction 𝐴 by RewriteOne(𝑚,𝐴).

Utility. CTS optimizes a user-defined utility function𝑈P,R (𝐴) which scores an abstraction 𝐴

given a corpus P and rewrite strategy R. There are no strict constraints on the form or properties
of the utility function. While in Section 4 we will focus on compressive utility functions, our
framework does not generally require this.

We say that a rewrite strategy is optimal with respect to a utility function if the rewrite strategy
chooses locations to rewrite at such that the utility is maximized. A naïve optimal rewrite strategy
exhaustively checks the utility of rewriting with each of the 2 |Matches(P,𝐴) | possible subsets of
Matches(P, 𝐴), however depending on the specific utility function computing an optimal or
approximately optimal strategy may be significantly more computationally tractable. In Section 4
we detail the rewrite strategy used by Stitch, which is an optimal, linear-time rewrite strategy for
compressive utility functions based on dynamic programming.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:10 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

3.1 Algorithm

Given a corpus P, rewrite strategy R, and utility function𝑈P,R (𝐴), the objective of CTS is to find
the abstraction 𝐴 that maximizes the utility 𝑈P,R (𝐴). CTS takes a branch-and-bound approach
[Land and Doig 1960; Morrison et al. 2016] to this problem, as described in this section.

Expansion. We construct the body of a partial abstraction 𝐴?? through a series of top-down
expansions starting from the trivial partial abstraction ??. Given a partial abstraction 𝐴?? we can
expand a hole in this partial abstraction using any production rule from the partial abstraction
grammar G𝐴?? , yielding a new abstraction 𝐴′??. We denote this expansion by 𝐴?? → 𝐴′??. In Figure
2A our overall top-down search is depicted as a series of expansions. We say that a complete
abstraction 𝐴 can be derived from a partial abstraction 𝐴??, denoted 𝐴?? →∗ 𝐴, if 𝐴 is in the
transitive reflexive closure of the expansion operation, i.e. there exists a sequence of expansions
from 𝐴?? to 𝐴. Any abstraction can be derived from ??.

A Naïve Approach. The goal of our algorithm is to find the maximum-utility abstraction. One
simple, inefficient approach to this is to simply enumerate the entire space of abstractions through
top down synthesis and return the one with the highest utility. This naïve approach maintains
a queue of partial abstractions initialized with just ??. At each step of the algorithm it pops an
abstraction from the queue, chooses a hole in it and expands that hole using each possible production
rule. Whenever an expansion produces a new partial abstraction it pushes it to the queue, and
when it produces a complete abstraction it calculates its utility and updates the best abstraction
found so far. Since an abstraction cannot match a program that is smaller than it, the algorithm can
stop expanding when all expansions would lead to abstractions larger than the largest program in
the corpus. This algorithm will enumerate all possible abstractions exactly once each.

Introducing Strict Dominance Pruning. While the naïve approach will find the optimal
abstraction, it is extremely inefficient. We can improve on this using an idea core to branch-and-
bound algorithms: pruning. We allow the algorithm to choose to prune a partial abstraction instead
of expanding it, in which case it simply discards the abstraction and chooses another from the
queue. Of course, to maintain optimality we must be certain that we never prune the branch of
search containing the optimal abstraction. To formalize safe pruning we will use the notion of strict
dominance from branch-and-bound literature [Chu and Stuckey 2015; Ibaraki 1977; Morrison et al.
2016], which we explain below in terms of a notion of covering.

A complete abstraction 𝐴′′ covers another complete abstraction 𝐴′, written covers(𝐴′′, 𝐴′), if the
utility of 𝐴′′ is greater than that of 𝐴′. A partial abstraction 𝐴′?? is strictly dominated by another
partial abstraction𝐴′′?? if and only if every complete abstraction that is derivable from𝐴′?? is covered
by a complete abstraction that is derivable from 𝐴′′??.

Formally,𝐴′′?? strictly dominates𝐴′?? iff ∀𝐴′. 𝐴′?? →∗ 𝐴′ =⇒ ∃𝐴′′. 𝐴′′?? →∗ 𝐴′′∧ covers(𝐴′′, 𝐴′).
Equipped with this formalism, we claim that it is safe to prune an abstraction𝐴′?? if we know that

there exists some 𝐴′′?? which strictly dominates it. Note that 𝐴′′?? does not necessarily contain the
optimum and may even be pruned in the search if it is strictly dominated by another abstraction.
Knowing the existence of𝐴′′?? is enough to enable pruning, regardless of whether it has been pruned
or has not yet been enumerated during search.

Lemma 1. Naïve search augmented with strict dominance pruning finds the optimal abstraction.

Proof. We proceed with a proof by induction. We seek to prove the equivalent statement that
the optimum is never pruned and thus it will be enumerated by the search.
Our inductive hypothesis is that the optimum has not yet been pruned. In the base case this

is trivially true, since no pruning has taken place yet. In the inductive step we must prove that a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:11

step of pruning maintains the validity of the inductive hypothesis. Recall that a step of pruning
will discard some partial abstraction 𝐴′?? which is strictly dominated by another abstraction 𝐴′′??.
Suppose then for the sake of contradiction that we did prune the optimum in this step; then the
optimum must have been derivable from 𝐴′??. By strict dominance we know that all abstractions
derivable from 𝐴′?? must be covered by some abstraction derivable from 𝐴′′??. Hence, there must
exist some abstraction that covers the optimum. However, since the utility of the optimum is greater
than or equal to that of all other abstractions, there is by definition no such abstraction; we have
thus arrived at a contradiction. □

This lemma ensures the safety of composing together pruning strategies, as long as they all are
forms of strict dominance pruning, since no instance of strict dominance pruning will remove the
optimum. Determining which partial abstractions are strictly dominated by which others is specific
to the utility function being used, and in Section 4 we identify two instances of strict dominance
used when instantiating this framework for a compression-based utility.

Upper Bound Pruning. We further improve this algorithm to employ upper bound based
pruning, in which we bound the maximum utility that can be obtained in a branch of search,
and discard the branch if we have previously found a complete abstraction with higher utility
than this bound. This is the most common form of pruning used in branch-and-bound algorithms
(see Morrison et al. 2016 Section 5.1 for a review). Our algorithm is generic over the upper bound
function𝑈P,R (𝐴??) which upper bounds the utility of any complete abstraction𝐴 that can be derived
from 𝐴??.
Formally, the bound must satisfy ∀𝐴. 𝐴?? →∗ 𝐴 =⇒ 𝑈P,R (𝐴) ≤ 𝑈P,R (𝐴??). While this could

trivially be satisfied with𝑈P,R (𝐴??) = ∞ for any choice of a utility function, a tighter bound will
allow for more pruning. The soundness of upper bound pruning in maintaining the optimality of the
solution trivially follows from the fact that the pruned branch only contains complete abstractions
that are at most as high-utility as the best abstraction found so far.

While we defer to Section 4 to construct the upper bound used by Stitch, it is worth mentioning
a key insight that helps in constructing tight bounds for many utility functions. When bounding
the utility of 𝐴??, it is useful to bound the set of possible locations where rewrites can occur for
any abstraction 𝐴 derived from 𝐴??. The following lemma provides such a bound:

Lemma 2. Matches(P, 𝐴??) is an upper bound on the set of locations where rewrites can occur in

any 𝐴 derived from 𝐴??.

This follows from the fact that as partial abstractions are expanded they become more precise
and thus match at a subset of the locations. Since rewriting only happens at a subset of match
locations, Matches(P, 𝐴??) serves as a bound on the set of locations where rewrites can occur.

An important consequence of Lemma 2 is that if a partial abstraction matches at zero locations,
then all abstractions derived from it will have zero rewriting locations, so no rewriting can occur.
Such branches can therefore be safely pruned.

Improving the Search Order. Finally, without sacrificing the optimality of this algorithm we
can heuristically guide the order in which the space of abstractions is explored. The queue of partial
abstractions used in top-down search can be replaced with a priority queue ordered by the upper
bound. This way, the algorithm will first explore more promising, higher-bound branches of search,
narrowing in on the optimal abstraction more quickly. In branch-and-bound literature this choice
of a search order that uses a sound upper bound is sometimes referred to as best-bound search and
makes the algorithm a form of A∗ search [Hart et al. 1968] since the upper bound is an admissible
heuristic [Morrison et al. 2016].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:12 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

In preliminary experiments on a subset of benchmarks we found that search order had little
effect on the overall runtime of the algorithm, but the best-bound ordering was moderately helpful
in more quickly narrowing in on the optimal solution (i.e. useful when running the algorithm with
a limited time budget), so this is used for all experiments.

Efficient Incremental Matching. When expanding an abstraction𝐴?? to a new abstraction𝐴′??,
it is easy to compute Matches(P, 𝐴′??) since we know it is a subset of Matches(P, 𝐴??). Thus,
there is no need to perform matching from scratch against every subtree in the corpus to compute
the match locations. Instead, we can simply inspect the relevant subtree at each match location of
the original abstraction to see which match locations will be preserved by a given expansion. In
fact, except when expanding into an abstraction variable 𝛼 , the sets of match locations obtained by
different expansions of a hole will be disjoint.

When expanding to an abstraction variable 𝛼 , if 𝛼 is an existing abstraction variable then this is a
situation where the same variable is being used in more than one place, as in the square abstraction
(𝜆𝛼. * 𝛼 𝛼). In this case we restrict the match locations to the subset of locations where within the
location all instances of 𝛼 are bound to syntactically identical subtrees.
Additionally, if the user provides a maximum arity limit, then an expansion that causes the

abstraction to exceed this limit can be discarded.

Algorithm Summary and Key Points. The CTS algorithm combines all of the aforementioned
optimizations in a top-down search algorithm with pruning. In summary, CTS takes as input a
corpus P, a rewrite strategy R, a utility function𝑈P,R (𝐴), and an upper bound function𝑈P,R (𝐴??),
and returns the optimal abstraction with respect to the utility function. CTS performs a top-down
search over partial abstractions and prunes branches of search when partial abstractions match
at zero locations or are eliminated by upper bound pruning or strict dominance pruning. CTS is
made further efficient through the aforementioned search-order heuristic and efficient incremental

matching. Importantly, none of these optimizations sacrifice the optimality of the abstraction found
— all pruning is done soundly, as discussed in the prior sections on upper bound pruning and strict
dominance pruning.
We also note that CTS is amenable to parallelization without losing optimality. This can be

implemented using a shared priority queue that is safely accessed by different worker threads
through a locking primitive. Strict dominance pruning trivially remains sound as it doesn’t depend
on any global information about the state of the search. Upper bound pruning also remains sound
even if workers only occasionally synchronize their best-abstraction-so-far, as this will just mean
that they occasionally have weaker upper bounds which are still sound.

Since the algorithm maintains a best abstraction so-far, it can also be terminated early, making it
an anytime algorithm. Finally, to learn a library of abstractions, CTS can be run repeatedly (much
like DreamCoder), adding one abstraction at a time to the library and rewriting the corpus with
each abstraction as it is learned before running CTS again. A listing of the full algorithm is provided
in Appendix A.

4 APPLYING CORPUS-GUIDED TOP-DOWN SEARCH TO COMPRESSION

Having presented the general framework and algorithm of corpus-guided top-down search, we
now instantiate this framework for optimizing a compression metric.

4.1 Utility

In compression we seek to minimize some measure of the size, or more generally the cost, of a
corpus of programs after rewriting them with a new abstraction. As in prior work [Ellis et al. 2021]

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:13

we penalize large abstractions by including abstraction size in the utility. The compressive utility
function for a corpus P and abstraction 𝐴 is given below.

𝑈P,R (𝐴) ≜ −cost(𝐴) + cost(P) − cost(RewriteR (P, 𝐴)) (8)
Here, cost(·) is a cost function of the following form:

cost(𝜆. 𝑒 ′) = cost𝜆 + cost(𝑒 ′)
cost(𝑒 ′𝑒 ′′) = costapp + cost(𝑒 ′) + cost(𝑒 ′′)
cost($𝑖) = cost$i
cost(𝑡) = cost𝑡 (𝑡), for 𝑡 ∈ Gsym
cost(𝛼) = cost𝛼

(9)

where cost𝜆 , costapp, cost$i, and cost𝛼 are non-negative constants, and cost𝑡 (𝑡) is a mapping
from grammar primitives to their (non-negative) costs. Finally, we introduce cost𝛼=0 (·) as a version
of cost(·) where cost𝛼 = 0.
We can equivalently construct the utility in Eq. (8) by summing over the compression gained

from performing each rewrite separately, as given below.

𝑈P,R (𝐴) = −cost(𝐴) +
∑︁

𝑒∈RewriteLocationsR (P,𝐴)
cost(𝑒) − cost(RewriteOne(𝑒, 𝐴)) (10)

By reasoning about the way that rewriting transforms a program, this utility can be broken
down even further:

𝑈P,R (𝐴) = −cost(𝐴) +
∑︁

𝑒∈RewriteLocationsR (P,𝐴)
𝑈𝑙𝑜𝑐𝑎𝑙 (𝐴, 𝑒) (11)

𝑈𝑙𝑜𝑐𝑎𝑙 (𝐴, 𝑒) =cost𝛼=0 (𝐴)︸ ︷︷ ︸
abstraction size

− (cost𝑡 (𝑡𝐴) + costapp · arity(𝐴))︸ ︷︷ ︸
application utility (negative)

+
∑︁

[𝛼→𝑒′] ∈args(𝐴,𝑒)
(usages(𝛼) − 1) · cost(𝑒 ′)︸ ︷︷ ︸

multiuse utility
(12)

where 𝑡𝐴 is the new primitive corresponding to abstraction 𝐴. This form of the utility function
can be efficiently computed without explicitly performing any rewrites; and it sheds light on the
different sources of compression. The three main terms in this expression are (1) the abstraction
size that comes from the shared structure that is removed, (2) the negative application utility that
comes from introducing the new primitive and lambda calculus app nonterminals to apply it to
each argument, and (3) the multiuse utility which comes from only needing to pass in a single copy
of an argument that might be use in more than one place in the body. We emphasize that this form
of the utility function is equivalent to the original definition based on rewriting given in Eq. (8).

4.2 Upper Bounding the Utility

We seek an upper bound function𝑈P,R (𝐴??) such that for any 𝐴 derived from 𝐴??,𝑈P,R (𝐴??) ≥
𝑈P,R (𝐴). We begin from the decomposition of the utility function given in Eq. (10). Since costs
are always non-negative, we can upper bound this by dropping the −cost(𝐴) term as well as the
negative term within the sum:

𝑈P,R (𝐴) ≤
∑︁

𝑒∈RewriteLocationsR (P,𝐴)
cost(𝑒) (13)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:14 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Intuitively, dropping the negative term from the sum is equivalent to assuming we compressed
the cost of this location all the way down to cost 0. We can also bound RewriteLocationsR (P, 𝐴)
as Matches(P, 𝐴??) using Lemma 2, yielding our final upper bound in terms of 𝐴??:

𝑈P,R (𝐴??) ≜
∑︁

𝑒∈Matches(P,𝐴??)
cost(𝑒) (14)

4.3 Strict Dominance Pruning

We identify two forms of strict dominance pruning compatible with a compressive utility. The first
is redundant argument elimination: a partial abstraction can be dropped if it has two abstraction
variables that always take the same argument as each other across all match locations, for example
if it had variables 𝛼 and 𝛽 and 𝛼 = 𝛽 = (+ 3 5) at one location, 𝛼 = 𝛽 = 2 at another location, and
so on for all match locations. This abstraction would then be strictly dominated by the abstraction
that doesn’t take 𝛽 as an argument and instead reuses 𝛼 in place of 𝛽 , and can hence be eliminated.
Thus an abstraction like (+ (* 𝛼 𝛽) ??) is strictly dominated by an abstraction like (+ (* 𝛼 𝛼)
??) if 𝛼 = 𝛽 across all match locations in the former abstraction.

The second is argument capture: when a partial abstraction takes the same argument for at least
one abstraction variable across all match locations, this abstraction can be discarded. This is because
every abstraction derivable is covered by another abstraction which is identical except it has the
argument inlined into the body. For example, if in the abstraction (+ (* 𝛼 𝛽) ??) the abstraction
variable 𝛼 takes the same argument 𝛼 =(+ 3 5) across every match location, there is a strictly
dominating partial abstraction that simply has (+ 3 5) inlined in its body: (+ (* (+ 3 5) 𝛽)
??). Note that argument capture does not apply when the argument contains a free variable, as
inlining would result in an invalid abstraction.

A close reader might notice that if the number of times 𝛼 appears in𝐴 is greater than the number
of rewrite locations, the abstraction with argument capture applied, 𝐴′, will have slightly lower
utility. Employing this pruning rule in our search means that we will find the optimal abstraction
subject to the constraint that all possible argument captures have occurred. This utility difference
from the optimal abstraction without argument capture is bounded by at most cost(𝐴′), since the
difference comes from the contribution of the size of the abstraction body itself to the utility. 2 In
preliminary experiments across all of our experimental datasets, we never find this edge case to
change which abstraction is chosen as optimal.

4.4 Rewrite Strategy

Stitch employs a linear-time, optimal rewrite strategy for a compression objective. The goal of an
optimal rewrite strategy is to efficiently select the optimal subset of Matches(P, 𝐴) to perform
rewrites at in order to maximize the utility.
The main challenge is that when match locations overlap, the strategy must decide which of

the two to accept. For example, consider the program (foo (foo (foo bar)) and the abstraction
𝑡𝐴 = 𝜆𝛼. (foo (foo 𝛼)). This abstraction matches at the root of the program with 𝛼 = (foo
bar), resulting in the rewritten program (𝑡𝐴 (foo bar)). However, though the abstraction also
matched at the subtree (foo (foo bar) with 𝛼 = bar in the original program, this match location
is no longer present in the rewritten program, so only one of the two locations can be chosen by
the rewrite strategy.

2Specifically, for some [𝛼 → 𝑒], the abstraction without argument capture is higher in utility by −(cost(𝑒) + costapp) ∗
|RewriteLocationsR (P, 𝐴) | + (cost(𝑒) − cost𝛼) ∗ usages(𝛼) . For a cost function where costapp < cost𝛼 , this is positive
when the argument is used more times than the abstraction itself is used.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:15

Our approach is a bottom-up dynamic programming algorithm, which begins at the leaves of
the program and proceeds upwards. At each node 𝑒 , we compute the cumulative utility so far if we
reject a rewrite here (util𝑅), if we accept a rewrite here (util𝐴), or if we choose the better of the two
options (util∗):

util𝑅 [𝑒] =
∑︁

𝑒′∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑒)
util∗ [𝑒 ′]

util𝐴 [𝑒] =

0 if 𝑒 ∉ Matches(P, 𝐴)

𝑈𝑙𝑜𝑐𝑎𝑙 (𝐴, 𝑒) +
∑

𝑒′∈args(𝐴,𝑒)
util∗ [𝑒 ′] otherwise

util∗ [𝑒] = max(util𝑅 [𝑒], util𝐴 [𝑒])

(15)

where𝑈𝑙𝑜𝑐𝑎𝑙 (𝐴, 𝑒) is the utility gained from a single rewrite as defined in Eq. (12). After calculating
these quantities the rewrite strategy can start from the program root and recurse down the tree,
rewriting at each node where rewriting is optimal (i.e. util𝐴 > util𝑅) and then recursing into its
arguments after rewriting. Since all arguments were originally subtrees in the program, these
quantities will have been calculated for all of them, with the caveat that their de Bruijn indices may
have been shifted. Shifting indices of a subtree does not change whether an abstraction can match
there nor does it change the utility gained from using that abstraction, so this simply requires some
extra bookkeeping to track.

This algorithm is optimal by a simple inductive argument: at each step of the dynamic program-
ming problem, we can assume that we know the cumulative utility of all children and potential
arguments at this node, so we can use Eq. (15) to calculate the cumulative utility of either rejecting
or accepting the rewrite at this node.

5 COMBINING CORPUS-GUIDED TOP-DOWN SEARCHWITH DEDUCTIVE

APPROACHES

In complex domains, assembling good libraries may involve more than just finding matching
code-templates; sometimes, some initial refactoring is necessary to expose common structure. For
example, consider learning the abstraction 𝜆𝛼. (* 2 𝛼) for doubling integers, given the expressions
(* 2 8), (* 7 2), and (right-shift 3 1). This is only possible if the system can use the
commutativity of multiplication to rewrite (* 7 2) into (* 2 7), and bitvector properties to
rewrite (right-shift 3 1) into (* 2 3); such rewrites are not natively supported by CTS.

In this section, we discuss how CTS can be combined with refactoring systems based on deductive
rewrites to increase its expressivity further. The core idea is simple: run a rewrite system on the
corpus to produce a set of refactorings of the corpus in a version space, then run CTS over the
resulting data structure.3 Intuitively, this will lead to improved performance compared with a purely
deductive approach since the cost of rewriting grows exponentially with the number iterations
of rewrites that are applied. This is a problem for fully deductive approaches like Ellis et al. 2021
because extracting the abstractions often requires a long chain of rewrites, especially for higher-arity
abstractions. However, a small number of rewrites is typically sufficient to expose the underlying
commonalities, as it was in the example above; performing only a handful of rewrites and then
using CTS to actually extract the library thus avoids the exponential blow-up of computing several
rewrites in sequence, while still benefiting from the increase in expressivity afforded by the rewrites.

3Note that while we have previously presented CTS as operating over syntax trees, the core notions of upper bounds and
matching that CTS operates on are not restricted to program trees.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:16 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

RU-AbsVar
RewriteUnify(𝛼, 𝑣) ⇝ [𝛼 → 𝑣]

RU-Hole
RewriteUnify(??𝑖 , 𝑣) ⇝ [??𝑖 → 𝑣]

RU-App
RewriteUnify(𝐴1, 𝑣1) ⇝ 𝑙1 RewriteUnify(𝐴2, 𝑣2) ⇝ 𝑙2 𝑙 = vmerge(𝑙1, 𝑙2)

RewriteUnify((𝐴1 𝐴2), (𝑣1 𝑣2)) ⇝ 𝑙

RU-Lam
RewriteUnify(𝐴, 𝑣) ⇝ 𝑙′ 𝑙 = DownshiftAll(𝑙′)

RewriteUnify((𝜆. 𝐴), (𝜆. 𝑣)) ⇝ 𝑙
RU-Same

RewriteUnify(𝑣, 𝑣) ⇝ []

RU-Union
RewriteUnify(𝐴, 𝑣1) ⇝ 𝑙

RewriteUnify(𝐴, 𝑣1 ⊎ 𝑣2) ⇝ 𝑙

VM-Same
[𝛼 → 𝑣1] ∈ 𝑙1 [𝛼 → 𝑣2] ∈ 𝑙2
[𝛼 → (𝑣1 ∩ 𝑣2)] ∈ vmerge(𝑙1, 𝑙2)

VM-Diff
[𝛼 → 𝑣] ∈ 𝑙1 𝛼 ∉ args(𝑙2)
[𝛼 → 𝑣] ∈ vmerge(𝑙1, 𝑙2)

Fig. 6. Defining RewriteUnify, which takes as input an abstraction and a version space of possible refactorings,

and yields multiple substitutions corresponding to all the ways that the abstraction’s holes and variables can

match with programs encoded by the version space.

Version Spaces. To illustrate this hybrid approach, we combine CTS with version spaces [Lau
et al. 2003; Polozov and Gulwani 2015] representing sets of programs semantically equivalent under
the 𝛽-inversion rewrite. Version spaces are represented as terms from a grammar obtained by
extending the grammar of expressions with the union (⊎) operator that represents a set of equivalent
expressions: 𝑣 F ∅ | 𝑣 ′ ⊎ 𝑣 ′′ | 𝜆. 𝑣 ′ | 𝑣 ′ 𝑣 ′′ | $𝑖 | 𝑡 . We define a denotation operator, ⟦𝑣⟧, mapping
a version space 𝑣 to a set of terms: for the union operator, ⟦𝑣 ⊎ 𝑣 ′⟧ = ⟦𝑣⟧ ∪ ⟦𝑣 ′⟧; for applications,
⟦𝑣 𝑣 ′⟧ = {𝑒 𝑒 ′ : ∀𝑒, 𝑒 ′ ∈ ⟦𝑣⟧ × ⟦𝑣 ′⟧}; for lambda abstractions, ⟦𝜆𝑣⟧ = {𝜆𝑒 : ∀𝑒 ∈ ⟦𝑣⟧}; for the
empty set, ⟦∅⟧ = ∅; and for de Bruijn indices and terminals, ⟦𝑣⟧ = 𝑣 . Ellis et al. 2021 gives a
procedure called 𝐼 𝛽 (𝑒), which take as input an expression 𝑒 and outputs a version space 𝑣 inverting
one step of 𝛽-reduction: that is, 𝑒 ′→𝛽 𝑒 iff 𝑒 ′ ∈ ⟦𝐼 𝛽 (𝑒)⟧.

To run CTS on top of this rewriting system requires a generalization of LambdaUnify: instead
of unifying an abstraction with a term, yielding a single substitution, we unify against a set of terms

(a version space), yielding a set of candidate substitutions. The relation RewriteUnify (Fig. 6)
accomplishes this, and equipped with this relation we can express the size of a subtree 𝑒 after
expanding it into the version space 𝐼 𝛽 (𝑒) and rewriting it with abstraction 𝐴 as:

cost(Rewrite(𝐴, 𝑒)) = min
𝑙 : RewriteUnify(𝐴,𝐼𝛽 (𝑒))⇝𝑙

cost𝑡 (𝑡𝐴) +costapp ·arity(𝐴) +
∑︁

𝑣∈args(𝑙)
min
𝑒′∈⟦𝑣⟧

cost(𝑒 ′)

(16)
We then can approximate the utility of rewriting a corpus (based on Eq. (10)) as follows

𝑈P,R (𝐴) ≈ −cost(𝐴) +
∑︁
𝑝∈P

max
𝑒∈subtrees(𝑝)

cost(𝑒) − cost(Rewrite(𝐴, 𝑒)) (17)

This utility is exact when the optimal way of rewriting the corpus using 𝐴 has at most one
rewrite location per program. This is because it considers the utility of the single best site at
which to perform the rewrite instead of considering multiple simultaneous rewrites at different
locations within a single program. We can bound this approximate utility for a partial abstraction
by computing the approximate utility directly while treating any version space bound to a hole in
args(𝑙) as having zero cost.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:17

Example: Learning map from fold. Consider learning the higher-order function map =

𝜆𝛼.(fold (𝜆𝑥 .𝜆ℓ . (cons (𝛼 𝑥) ℓ))) from two example programs: doubling a list of num-
bers, expressed as (fold (𝜆𝑥 .𝜆ℓ . (cons (+ 𝑥 𝑥) ℓ))), and decrementing a list of numbers,
expressed as (fold (𝜆𝑥.𝜆ℓ . (cons (- 𝑥 1) ℓ))). Matching these programs with the map function
requires re-expressing them as (fold (𝜆𝑥.𝜆ℓ . (cons ((𝜆𝑧. (+ z z)) 𝑥) ℓ))) and (fold
(𝜆𝑥.𝜆ℓ . (cons ((𝜆𝑧. (- z 1)) 𝑥) ℓ))), which matches the map function with the substitutions
𝛼 = (𝜆𝑧. (+ z z)) and 𝛼 = (𝜆𝑧. (- z 1)) respectively. These two re-expressions are performed
by running a single round of 𝛽-inversion as a deductive rewriting step.

While the majority of our experiments will focus on evaluating the approach laid out in Section 3
and Section 4, we implement and evaluate a prototype of integrating version spaces in this way in
Section 6.5.

6 EXPERIMENTS

In this section, we evaluate corpus-guided top-down search for library learning. Specifically, our
evaluation focuses on five hypotheses about the performance of Stitch:

(1) Stitch learns libraries of comparable quality to those found by existing deductive library learning

algorithms in prior work, while requiring significantly less resources. In Section 6.1 we run
Stitch on the library learning tasks from [Ellis et al. 2021] and directly compare Stitch to
DreamCoder, the deductive algorithm introduced in that work. We find that Stitch learns
libraries which usually match or exceed the baseline in quality (measured via a compression
metric), while improving the resource efficiency in terms of memory usage and runtime by 2
and 3-4 orders of magnitude compared to the baseline (respectively).

(2) Stitch scales to corpora of programs that contain more and longer programs than would be

tractable with prior work. In Section 6.2, we evaluate Stitch’s ability to learn libraries within
eight graphics domains from Wong et al. 2022, which are considerably larger and more
complex than have been considered in previous work. We find that Stitch on average
obtains a test set compression ratio of 2.55x-11.57x in 0.19s-60.16s, with a peak memory usage
of 11.21MB-714.55MB in these domains. The problems are large enough to time out with the
DreamCoder baseline.

(3) Stitch degrades gracefully when resource-constrained. In Section 6.3 we investigate Stitch’s
performance when run as an anytime algorithm; i.e., one that can be terminated early for
a best-effort result if a corpus is too large or there are limits on time or memory. We reuse
the eight graphics domains from Wong et al. 2022 and find that with its heuristic guidance
Stitch converges upon a set of high quality abstractions very early in search, doing so within
1% of the total search time in 3 out of 8 domains and within 10% in all except one.

(4) All the elements of Stitch matter. In Section 6.4, we carry out an ablation study on Stitch
and find the argument capturing and upper bound pruning methods are essential to its
performance, while redundant argument elimination also proves useful in certain domains.
With all optimizations disabled, we find that Stitch cannot run in ≤ 90 minutes and ≤ 50GB
of RAM on any of the domains from Wong et al. 2022.

(5) Stitch is complementary to deductive rewrite-based approaches to library learning. These prior
experiments show the superior runtime performance of Stitch relative to deductive rewrite
systems, but deductive systems have an important advantage over Stitch: the ability to
incorporate arbitrary rewrite rules to expose more commonality among different programs
and in that way discover better libraries. Such deductive approaches are especially more apt
at learning higher-order abstractions. In Section 6.5, we give evidence that this expressivity

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:18 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

gap can be reduced by running Stitch on top of a deductive rewrite system, allowing it to
learn many new abstractions while still using <2% of the compute time.

For all experiments, we parameterize Stitch’s cost(𝑒) function (as defined in Section 4.1) as
follows: costapp = cost𝜆 = 1, cost$i = cost𝛼 = cost𝑡 (𝑡) = 100. To avoid overfitting, DreamCoder
prunes the abstractions that are only useful in programs from a single task. We add this to Stitch
as well, treating each program as a separate task for datasets that don’t divide programs into tasks.

We run all experiments on a machine with two AMD EPYC 7302 processors, 64 CPUs, and 256GB
of RAM. We note however that Stitch itself runs exceptionally well on a more average machine.
For example, on one author’s laptop (ThinkPad X1 Carbon Gen 8), the experiments from Section 6.2
can be replicated with nearly identical runtimes, and these are the most computationally intensive
experiments outside of the ablation study.

6.1 Iterative Bootstrapped Library Learning

Experimental setup. Our first experiment is designed to replicate the experiments in DreamCoder,
which is the state-of-the-art in deductive library learning. DreamCoder learns libraries iteratively:
the system is initialized with a low-level DSL, and then alternates between synthesizing programs
(via a neurally-guided enumerative search) that solve a training corpus of inductive tasks and
updating the library of abstractions available to the synthesizer. Traces from the experiments
carried out by Ellis et al. 2021 are publicly available4 and include all of the intermediate programs
that were synthesized as well as the libraries learned from those programs.
In this experiment, we take these traces and evaluate Stitch on each instance where library

learning was performed, comparing the quality of the resulting library to the original one found
by DreamCoder. We also re-run DreamCoder on these same benchmarks in order to evaluate its
resource usage, capturing its runtime and memory usage in the same environment as Stitch.

The library learning algorithm in Ellis et al. 2021 implements a stopping criterion to determine
how many abstractions to retain on any given set of training programs. In our comparative
experiments, we run the DreamCoder baseline first, and then match the number of abstractions
learned by Stitch at each iteration to those learned by the baseline under its stopping criterion
so that timing comparisons are fair. We record the total time spent both performing abstraction
learning and rewriting for both Stitch and DreamCoder.

We replicate experiments on five distinct domains from Ellis et al. 2021:
• Lists: A functional programming domain consisting of 108 total inductive tasks.
• Text: A string editing domain in the style of FlashFill [Gulwani et al. 2015] consisting of 128
total inductive tasks.
• LOGO: A graphics domain consisting of 80 total inductive tasks.
• Towers: A block-tower construction domain consisting of 56 total inductive tasks.
• Physics: A domain for learning equations corresponding to physical laws from observations
of simulated data, consisting of 60 total inductive tasks.

Assessing library quality with a compression metric. The standard Stitch configuration optimizes
a compression metric that minimizes the size of the programs after being rewritten to use the
abstraction. This is a standard metric in program synthesis, since shorter programs are frequently
easier to synthesize. Optimizing against this metric is equivalent to maximizing the likelihood of
the rewritten programs under a uniform PCFG.
The DreamCoder synthesizer is more sophisticated than simple enumeration; it takes as input

a learned typed bigram PCFG and leverages it to synthesize programs more efficiently. When

4https://github.com/mlb2251/compression_benchmark

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://github.com/mlb2251/compression_benchmark

Top-Down Synthesis for Library Learning 41:19

LOGO Lists Towers Text Physics
Domain

1.00

1.05

1.10

1.15

1.20

Rewritten corpus size ratio (DreamCoder / Stitch)

Fig. 7. Compression rates obtained when running Stitch on the five domains considered in 6.1 relative to

those of DreamCoder. Higher is better for Stitch: a ratio above 1.0 indicates that Stitch achieves greater

compression than DreamCoder. The specific compression metric used in the ratio is given in Eq. (18).

performing compression, it optimizes against this given PCFG in order to find abstractions that
will be more profitable for its specific synthesizer. For the purpose of this evaluation, however, we
restrict ourselves to the uniform PCFG because the one used by DreamCoder requires programs to
be in a particular normal form. Another aspect of DreamCoder relevant to its compression metric
is that DreamCoder synthesizes multiple programs that solve the same task and then selects the
abstraction that works best on some program for a given task. This is expressed formally in the
equation below.

cost(𝐴) +
∑︁
task

min
𝑝∈task

cost (Rewrite(𝑝,𝐴)) (18)

It is trivial to implement this best-of-task metric in Stitch, so we use this for the comparisons with
DreamCoder.

Results. We compare DreamCoder and Stitch for library quality and resource efficiency.
Library quality. We first examine the quality of the libraries learned by both Stitch and

DreamCoder using the compression metric in Eq. (18): Fig. 7 shows the ratio between them across
all of the benchmarks for each domain. A ratio of 1.0 indicates that programs are the exact same

length under the libraries learned by DreamCoder and Stitch, a ratio greater than 1.0 indicates
that Stitch learns more compressive libraries, and a ratio less than 1.0 indicates that Stitch learns
libraries which are less compressive. For example, a ratio of 1.1 indicates that DreamCoder rewrote
to produce a corpus 10% larger than that of Stitch, so it achieved less compression.

These results show that Stitch generally learns libraries of comparable and often greater quality
than DreamCoder when matching the number of abstractions learned by the latter. In the logo,
towers, text, and physics domains, Stitch always finds abstractions that are of equal—and often
considerably greater—compressive quality than DreamCoder does; in the list domain, Stitch more
often than not still obtains better compression, but sometimes loses out to DreamCoder. This is
a result of the fact that Stitch cannot learn higher-order abstractions, which are useful in this
domain; although we emphasize our focus is on scalability, we will later present an extension of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:20 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

LOGO Lists Towers Text Physics
Domain

103

104

105

106

Pe
ak

 m
em

or
y

us
e

(K
B)

Stitch (1 cpu)
Dreamcoder (8 cpus)

Fig. 8. Peak memory usage of Stitch and Dream-

Coder while running on the five domains consid-

ered in 6.1, averaged over all benchmarks. Lower

is better; black lines indicate ± one standard devi-

ation. Note the logarithmic y-axis.

LOGO Lists Towers Text Physics
Domain

10−3

10−2

10−1

100

101

102

103

Ti
m

e
pe

r a
bs

tra
ct

io
n

(s
ec

on
ds

)

Stitch (1 cpu)
Dreamcoder (8 cpus)

Fig. 9. Wall-clock time required to find (and

rewrite under) one abstraction in each of the five

domains from 6.1, averaged over all benchmarks.

Lower is better; black lines indicate ± one stan-

dard deviation. Note the logarithmic y-axis.

Stitch capable of handling most higher-order functions in Section 6.5, based on the formalism
developed in Section 5. Nonetheless, we conclude that Stitch learns libraries whose quality is

comparable to and often better than those found by DreamCoder.

Resource efficiency. In addition to the quality of the libraries found, we are interested in how
the two methods compare in terms of time and space requirements. Since we a priori believe
Stitch to be significantly faster, for this evaluation we allow DreamCoder to use 8 CPUs but
limit Stitch to single threading5. The results are shown in Fig. 8 and Fig. 9; in summary, we find
that Stitch takes tens of milliseconds to discover abstractions across all five domains—achieving
a 3-4 order of magnitude speed-up over DreamCoder—while also requiring more than 2 orders of

magnitude less memory. We thus conclude that Stitch is dramatically more efficient than the

state-of-the-art deductive baseline when replicating the iterative library learning experiments
of Ellis et al. 2021.

6.2 Large-scale Corpus Library Learning

Experimental setup. While the previous experiment allowed us to benchmark Stitch directly
against a state-of-the-art deductive baseline, the iterated learning setting considered by Ellis et al.
2021 only evaluates library learning on relatively small corpora of short programs discovered by
the synthesizer. Our second experiment is instead designed to evaluate Stitch in a more traditional
learning setting, in which we aim to learn libraries of abstractions from a large corpus of existing
programs all at once.
We source our larger-scale program datasets from Wong et al. 2022, which present a series of

datasets designed as a benchmark for comparing human-level abstraction learning and graphics
program writing against automated synthesis and library learning models. These datasets are
divided into two distinct high-level domains (technical drawings and block-tower planning tasks),
each consisting of four distinct subdomains containing 250 programs:
• Technical drawing domains: nuts and bolts; vehicles; gadgets; furniture: CAD-like
graphics programs that render technical drawings of common objects, written in an initial DSL

5While this may seem unfair to Stitch, it is worth noting that it would be unlikely to benefit from multithreading when
running on the order of milliseconds anyway; DreamCoder, on the other hand, would struggle greatly in these domains
without the aid of parallelism.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:21

consisting of looped transformations (scaling, translation, rotation) over simple geometric
curves (lines and arcs).
• Tower construction domains: bridges; cities; houses; castles: Planning programs that
construct complex architectures by placing blocks, written in an initial DSL that moves a
virtual hand over a canvas and places horizontal and vertical bricks.

We choose these datasets not only for their size and scale (full dataset statistics in Table 1), but also
for the complexity of their potential abstractions: Wong et al. 2022 explicitly design their corpora
to contain complex hierarchical structures throughout the programs, making them an interesting
setting for library learning.

Domain #Programs Average program length Average program depth

nuts & bolts 250 76.03 ± 24.22 15.18 ± 2.13

gadgets 250 142.85 ± 87.32 20.88 ± 2.37

furniture 250 171.74 ± 48.41 31.83 ± 5.33

vehicles 250 141.70 ± 40.23 21.22 ± 1.35

bridges 250 137.03 ± 59.71 92.35 ± 39.80

cities 250 161.70 ± 55.56 109.80 ± 37.66

castles 250 189.09 ± 60.18 128.27 ± 40.77

houses 250 168.13 ± 55.75 114.85 ± 37.60
Table 1. Summary statistics about the domains from Wong et al. 2022. Program length is the number of

terminal symbols in the program; program depth is the length of the longest path from root to leaf in the

program tree. Both are reported as the mean over the entire dataset ± one standard deviation.

When performing library learning in a synthesis setting by compressing a corpus of solutions, it’s
desirable to find abstractions that would be useful for solving new tasks, as opposed to abstractions
that overfit to the existing solutions. To evaluate how well the abstractions we learn apply to
heldout programs in the domain, we split the corpora into train and test sets, running Stitch on
the train set and evaluating its compression on the test set. Since Wong et al. 2022 do not present a
train/test split of their datasets, we use stochastic cross validation to evaluate the generalization of
the libraries found by Stitch. For each domain, we randomly sample 80% of the dataset to train
on and reserve the last 20% as a held out test set; we repeat this procedure 50 times. We then ask
Stitch to learn a library consisting of ≤ 10 abstractions with a maximum arity of 3, and average
the results across the different random seeds.

To obtain a baseline to compare its performance against, we once again turned to DreamCoder
[Ellis et al. 2021]. However, we found that DreamCoder was unable to discover even a single
abstraction when run directly on any of the datasets from Wong et al. 2022, despite being given
hours of runtime and 256GB of RAM. We also experimented with heavily sub-sampling the training
dataset before passing it to DreamCoder, but failed to find a configuration under which DreamCoder
finds any interesting abstractions at all due to the fact that it immediately blows up on programs
as long as these. As a result, we resort to presenting Stitch’s performance metrics without any
baseline to compare against; we stress that this is a direct result of the fact that Stitch is the first
library learning tool that scales to such a challenging setting.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:22 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Domain
Compression Ratio

Runtime (s) Peak mem. usage (MB)
Training set Test set

nuts & bolts 12.00 ± 0.25 11.57 ± 0.49 0.24 ± 0.04 11.10 ± 0.17

gadgets 4.03 ± 0.15 3.91 ± 0.31 1.83 ± 0.35 30.11 ± 0.85

furniture 4.95 ± 0.07 4.85 ± 0.26 2.83 ± 0.49 30.88 ± 0.62

vehicles 4.28 ± 0.14 4.14 ± 0.25 1.52 ± 0.29 26.98 ± 0.88

bridges 4.36 ± 0.06 3.78 ± 0.14 17.58 ± 1.26 189.08 ± 10.10

cities 3.15 ± 0.05 3.06 ± 0.14 50.74 ± 3.96 413.63 ± 9.51

castles 2.57 ± 0.07 2.55 ± 0.08 77.26 ± 6.98 683.89 ± 32.96

houses 8.92 ± 0.21 8.85 ± 0.57 15.54 ± 1.37 241.17 ± 2.86

Table 2. Results for the large-scale library learning experiment in Sec. 6.2. The compression ratio refers to

how many times smaller the corpus is after rewriting under the learned library compared to the original

corpus; higher is thus better. All results are given as the mean ± one standard deviation over 50 runs with

different random seeds for the dataset splitting.

Results. The results are summarized in Table 2. We find that Stitch scales up to even the most
complex sub-domains, running in 77 seconds with a peak memory usage below 1GB on castles. On
four out of eight of the domains, Stitch finishes in single-digit seconds and consumes only tens of
megabytes. This stands in stark contrast to DreamCoder, which we were unable to run on the very
simple nuts & bolts domain even with 256GB RAM and several hours worth of compute budget.
These results thus support our claim that Stitch scales to corpora of programs that would be

intractable with prior library learning approaches.
We hope that by providing our results on these datasets in full, future work in this field will

benefit from having a directly comparable baseline.

6.3 Robustness to Early Search Termination

Experimental setup. This experiment is designed to evaluate how early into the search procedure
Stitch finds what will eventually prove to be the optimal abstraction. This is highly relevant
in settings where the set of training programs is too large to run the search to completion. The
experiment showcases one of Stitch’s more subtle strengths: corpus-guided top-down abstraction
search is an anytime algorithm, and thus does not need to be run to completion to give useful
results.

We re-use the domains from Wong et al. 2022 and once again evaluate the quality of the library
learned (measured in program compression), similarly to what was done in the previous experiment.
However, since we are interested in how quickly Stitch finds what it perceives to be the optimal
abstraction, we measure compressivity of the training dataset itself (rather than a held-out test
set) and capture the compression ratio obtained by each candidate abstraction found during search
(rather than just the compression ratio obtained when search has been run to completion). Thus,
we are able to investigate how early on during the search procedure Stitch converges on a chosen
library. We restrict Stitch to learning a single abstraction with a maximum arity of 3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:23

0.001% 0.01% 0.1% 1.0% 10% 100%
Search progress (log scale; %)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
du

ct
io

n
in

 si
ze

 th
us

 fa
r v

s o
pt

im
al

 re
du

ct
io

n
(%

)

nuts & bolts
bridges
gadgets
cities
furniture
castles
vehicles
houses

Fig. 10. Reduction in size obtained on the training set when rewritten under the best abstraction found thus

far vs. the number of nodes expanded during search. The y-axis is normalized with respect to the optimal

abstraction; the x-axis is normalized with respect to the total number of nodes explored by Stitch. Lines

thus end earlier the quicker Stitch finds the optimal abstraction; however in all runs Stitch continues to
search until reaching 100% on the x-axis, exploring the rest of the abstraction space without finding a new

best abstraction. Note the logarithmic x-axis.

Results. The results are shown in Fig. 10. These results validate our hypothesis that Stitch is

empirically robust to terminating the search procedure early: in every sub-domain except for
nuts & bolts Stitch converges to the optimal abstraction very early on, having only completed a tiny
fraction of the total search.6 We believe that this has great importance for Stitch’s applicability in
data-rich settings since it suggests that a nearly-optimal abstraction can be found even if the search
must be terminated early (e.g. after a fixed amount of time has passed), making early stopping an
empirically useful way of speeding up the library learning process.

6.4 Ablation Study

Experimental setup. Stitch implements several different optimizations, which we have argued
hasten the search for abstractions. To verify that this claim holds in practice, we now carry out a
brief ablation study.

Since the space of every possible combination of optimizations is too large to present succinctly,
we focus our attention on four ablations:
• no-arg-capture (from Section 4.3), which disables the pruning of abstractions which are
only ever used with the exact same set of arguments (and these arguments could therefore
just be in-lined for greater compression).
• no-upper-bound, which disables the upper bound based pruning.

6Given that significant attention has already been given to wall-clock run-times of Stitch on similar workloads in 6.2, we
here use the number of nodes explored instead of wall-clock time to ensure deterministic and easily reproducible results.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:24 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

System

Domain
bridges castles cities gadgets furniture houses

nuts &
bolts vehicles

no-arg-capture RAM RAM RAM 16714.28 RAM RAM 30.21 26.67

no-upper-bound 12.15 23.71 27.90 207.76 119.00 36.18 179.12 179.99

no-redundant-args 1.95 1.42 1.37 1.01 1.00 1.01 1.09 1.00

no-opt RAM RAM RAM � RAM RAM � RAM

Table 3. Results from the ablation study. Each cell contains the ratio between the number of nodes explored

during search by that particular system and the number of nodes explored by the baseline on the same

domain. Lower is better; 1.00 means performance is identical to the baseline. Cells labeled RAM crashed

due to reaching the 50GB virtual address space limit, while those labeled � reached the 90 minute time

restriction.

• no-redundant-args (from Section 4.3), which disables the pruning of multi-argument ab-
stractions that have a redundant argument that could be removed because it is always the
same as another argument.
• no-opts, which disables all of Stitch’s optimizations.

To isolate the impact of disabling optimizations, we run a single iteration of abstraction learning on
each of the 8 domains from 6.2 and collect the number of nodes explored during the search. The first
iteration is generally the most challenging as the corpus is large and has not yet been compressed
at all. Focusing on the number of nodes explored (rather than for example runtime) allows for
deterministic results. We also fix the maximum arity of abstractions to 3 in all runs, aiming to strike
a good balance between compute requirements and how much the optimization will be exposed.
We limit each run to 50GB of virtual address space, as well as 90 minutes of compute.

Results. The results are shown in Table 3. We first note as a sanity check that each ablation does
indeed lead to reduced performance in general (i.e. explores a search space larger than the baseline
does). Furthermore, the results suggest that upper bound based pruning is the most important in
the nuts & bolts and vehicles domains, while pruning out argument capture abstractions is the most
important in the other six domains; it is noteworthy that this latter ablation by itself causes Stitch
to reach the memory limit on more than half of the domains. On the other hand, disabling the
pruning of redundant arguments has a relatively modest impact on the size of the search space, but
still leads to an almost 2x improvement in the bridge domain.

Perhaps the most important takeaway from this ablation study is that when all optimizations are
disabled, Stitch fails to find an abstraction within the resource budget on any of the domains. This
verifies our hypothesis that corpus-guided pruning of the search space is the key factor involved in
making top-down synthesis of abstractions tractable.

6.5 Learning Libraries of Higher-Order Functions

Experimental setup. Our experiments up till now have focused on performant and scalable library
learning. This comes at the expense of some expressivity: deductive rewrite systems can, in principle,
express broader spaces of refactorings. For example, a rewrite based on inverting 𝛽-reduction allows
inventing auxiliary 𝜆-abstractions, which helps with learning higher-order functions: in Ellis et al.
2021, DreamCoder is shown to recover higher-order functions such as map, fold, unfold, filter,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:25

and zip_with, starting from the Y-combinator. This works by constructing a version space which
encodes every refactoring that is equivalent up to 𝛽-inversion rewrites. But DreamCoder’s coverage
comes at a steep cost as inverting 𝛽-reduction is expensive.
In this experiment, we seek to give evidence that it is possible to make Stitch recover all of

these higher-order functions by layering it on top of the version space obtained after a single step
of DreamCoder’s 𝛽-inversion, following the formalism outlined in Section 5. We then compare this
modified version of Stitch with DreamCoder on its ability to learn these higher-order functions
from programs generated by intermediate DreamCoder iterations, and measure the runtime of
each approach.

Probabilistic Re-ranking. While the approach outlined in Section 5 should suffice to layer Stitch
on top of deductive rewrite systems based on version spaces, some extra care needs to be taken to
combine it with DreamCoder. This is because DreamCoder implements a probabilistic Bayesian
objective for judging candidate abstractions (exploiting the connection between compression and
probability [Shannon 1948]), seeking the library 𝐿 which maximizes 𝑃 (𝐿)∏𝑝∈P 𝑃 (𝑝 |𝐿) for a given
or learned prior 𝑃 (𝐿) and program likelihood 𝑃 (𝑝 |𝐿). Stitch, on the other hand, effectively judges
compression quality via a cost function capturing the (weighted) size of the programs as detailed in
Section 4.

To implement this probabilistic heuristic in Stitch, we simply run Stitch on the version spaces
as-is but then re-score each complete abstraction popped off of the priority queue under the Bayesian
objective, using DreamCoder’s models of the prior and likelihood. To make this integration easier,
we re-implement Stitch in Python, giving a prototype version called pyStitch which is only used
for this experiment. Our implementation employs strict dominance pruning, and prunes using the
bound on the approximate utility given in Section 5.

System Fold Unfold Map Filter ZipWith Time (s)

Base ✓ × ✓ × ✓ 503

+Bayes ✓ × ✓ × ✓ 817

+VS ✓ ✓ ✓ × ✓ 3231
pyStitch

+Bayes+VS ✓ ✓ ✓ ✓ ✓ 3042

DreamCoder

Step 1 × × ✓ × ✓ 67

Step 2 × × ✓ ✓ × 116

Step 3 × × ✓ ✓ ✓ 2254

Step 4 ✓ ✓ ✓ ✓ ✓ 228048

Table 4. Comparing library learners on functional programming exercises. DreamCoder, 𝑛-steps: deductive

baseline rewriting 𝑛 steps of 𝛽-reduction. pyStitch: Python reimplementation of Stitch, which enables

better interoperability with DreamCoder’s version space algebra (+VS) and probabilistic models (+Bayes).

pyStitch+VS+Bayes learns all of the same higher-order functions, using < 2% of the compute.

Results. The results are shown in Table 4. We note first the large discrepancy in runtimes; running
DreamCoder with 4 steps of rewriting takes roughly 2.5 days of compute on this domain, while
even the slowest version of pyStitch still finishes in less than an hour. In terms of the number of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:26 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

higher-order abstractions found, DreamCoder only finds all five when run in its most expensive
configuration; reducing the computation cost quickly decreases its expressivity. For pyStitch, the
Bayesian re-ranking alone (pyStitch+Bayes) does not yield any improvements, while running it
on the version spaces (pyStitch+VS) yields 4 out of 5 functions. However, it is only when these
two adaptations are used in conjunction (pyStitch+Bayes+VS) that the Stitch-based method is
able to find all of the higher-order functions.
In summary, we find that running CTS after a single step of version space rewriting and then

probabilistically re-ranking the results suffices to recover the core higher-order functions that
DreamCoder learns, while using <2% of its compute. We thus conclude that running Stitch on

top of a deductive rewrite system reduces the expressivity gap, while retaining superior

performance.

7 RELATEDWORK

Stitch is related to two core ideas from prior work: deductive refactoring and library learning

systems, which introduce the idea of learning abstractions that capture common structure across
a set of programs, but have largely been driven by deductive algorithms; and guided top-down

program synthesis systems, which use cost functions to guide top-down enumerative search
over a space of programs, but have largely been used to synthesize whole programs for individual
tasks in prior work.

7.1 Deductive Refactoring and Library Learning

Recent work shares Stitch’s goal of learning libraries of program abstractions which capture
reusable structure across a corpus of programs [Allamanis and Sutton 2014; Cropper 2019; Dechter
et al. 2013; Ellis et al. 2021, 2018; Iyer et al. 2019; Jones et al. 2021; Shin et al. 2019; Wong et al. 2021].
Several of these prior approaches also introduce a utility metric based on program compression in
order to determine the most useful candidate abstractions to retain [Dechter et al. 2013; Ellis et al.
2021; Iyer et al. 2019; Lázaro-Gredilla et al. 2019; Wong et al. 2021].
Much of this this prior work follows a bottom-up approach to abstraction learning, combining

a bottom-up traversal across individual training programs with a second stage to extract shared
abstractions from across the training corpus. This approach includes systems that work through
direct memoization of subtrees across a corpus of programs [Dechter et al. 2013; Lázaro-Gredilla
et al. 2019; Lin et al. 2014]; antiunification (caching tree templates that can be unified with training
program syntax trees) [Ellis et al. 2018; Henderson 2013; Hwang et al. 2011; Iyer et al. 2019]; or
by more sophisticated refactoring using one or more rewrite rules to expose additional shared
structure across training programs [Chlipala et al. 2017; Ellis et al. 2021, 2018; Liang et al. 2010].
Many of the bottom up algorithms draw more generally on deductive synthesis approaches

that apply local rewrite rules in a bottom-up fashion to program trees in order to refactor them —
historically, to synthesize programs from a declarative specification of desired function [Burstall and
Darlington 1977; Manna and Waldinger 1980]. Deductive approaches to library learning, however,
confront fundamental memory and search-time scaling challenges as the corpus size and depth of
the training programs increases; prior deductive approaches such as [Ellis et al. 2021, 2018] use
version spaces [Lau et al. 2003; Mitchell 1977] to mitigate the memory usage during bottom-up
abstraction proposal. Still, deductive approaches are challenging to bound and prune (unlike the
top-down approach we take in Stitch), as they generally traverse individual program trees locally
and must store possible abstraction candidates in memory before the extraction step.

Some prior work [Allamanis and Sutton 2014; Shin et al. 2019] takes an MCMC-based approach
with better scaling behavior than deductive rewrites, but differs from the goals of Stitch as they
don’t address binders and focus on common syntactic fragments instead of well-formed functions.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:27

7.2 Guided Top-Down Program Synthesis

Stitch uses a corpus-guided top-down approach to learning library abstractions that is closely
related to recent guided enumerative synthesis techniques. This includes methods that leverage
type-based constraints on holes [Feser et al. 2015; Polikarpova et al. 2016], over- and under-
approximations of the behaviors of holes [Chen et al. 2020; Lee et al. 2016], and probabilistic
techniques to heuristically guide the search [Balog et al. 2016; Ellis et al. 2020, 2021; Nye et al. 2021;
Shah et al. 2020]. These approaches have largely been applied in to synthesize entire programs based
on input/output examples or another form of specification, in contrast to the abstraction-learning
goal in our work [Allamanis et al. 2018; Balog et al. 2016; Chen et al. 2018; Ellis et al. 2018; Ganin
et al. 2018; Koukoutos et al. 2017]. Like Stitch however, these approaches sometimes use cost
functions (such as the likelihood of a partially enumerated program under a hand-crafted or learned
probabilistic generative model over programs) in order to direct search towards more desirable
program trees. However, Stitch’s cost function leverages a more direct relationship between
partially-enumerated candidate functions and the existing training corpus, unlike the cost functions
typically applied in inductive synthesis, which must be estimated from input/output examples.

7.3 Lambda-aware unification

The LambdaUnify procedure presented in Section 3 relates to prior work on unification modulo
binders [Dowek et al. 1995, 1996; Huet 1975; Miller 1991, 1992].
Notion of beta-equivalence. This prior work is concerned with more general notions of equiva-

lence modulo beta-reduction, while LambdaUnify is based on a restricted but fast syntax-driven
equivalence. For example, in Dowek et al. 1996 one might try to unify (𝛼 foo) with (foo) and get the
two solutions: [𝛼 → (𝜆. $0)] and [𝛼 → (𝜆. foo)]. In contrast, LambdaUnify will never introduce
a 𝜆−abstraction to create a higher order argument and thus (𝛼 foo) and (foo) would not unify
at all, since one is an application while the other is a primitive. Instead, higher order abstraction
arguments are handled by combining the algorithm with a deductive approach when desirable
as in Section 5. We also note that in LambdaUnify(𝐴, 𝑒) it is assumed that 𝑒 is an expression and
thus does not contain abstraction variables, which further simplifies the approach compared to this
prior work.
Handling of binders. Dowek et al. 1995 and Dowek et al. 1996 both employ de Bruijn indexed

variables and therefore must similarly account for the shifting of variables in arguments when
inverting beta reduction. While LambdaUnify handles this through DownshiftAll, Dowek et al.
1995 and Dowek et al. 1996 both converting their terms to the 𝜆𝜎−calculus of explicit substitutions
[Abadi et al. 1989] which allows them to insert upshifting operators at each abstraction variable
location. This alternate handling of shifting is useful given the more general notion of equivalence
they are considering, but is excessive for our simpler syntax-guided task.
Handling of holes. In LambdaUnify(𝐴, 𝑒) we allow 𝐴 to contain holes ?? which are allowed to

violate index shifting rules during unification as they are considered unfinished subtrees of the
abstraction. This is handled through the use of &𝑖 indices. While the special-case handling of holes
in expressions is not directly part of this prior work, there are similarities between it and the
Skolemization [Skolem 1920] done in Miller 1992. Skolemization allows for lifting an existential
quantifier (i.e. an abstraction variable or hole) above a universal quantifier (i.e. a lambda) by turning
the abstraction variable or hole into a function of its local context — in essence piping the local
context into the hole. In the context of the lambda calculus this is essentially a form of lambda
lifting [Johnsson 1985], which is the process of lifting a local function that contains free variables
by binding the free variables as additional arguments to the function and passing them in at each
call site. In Miller 1992 this is used for abstraction variables (as there are no holes) and aids in

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:28 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

the more general notion of beta-equivalence they are dealing with, while for our purposes the &𝑖
variables suffice and don’t require extra manipulations of lambdas to thread in the local context.

7.4 Upper Bounds in Network Motifs

There is also an interesting connection between this work and prior work on finding network

motifs [Milo et al. 2002], which are frequently-occurring subgraphs within a corpus of graphs.
One approach to mining high-frequency motifs is based on growing a motif one edge at a time,
much like we grow abstractions one node at a time during our search [Kuramochi and Karypis
2001, 2004; Schreiber and Schwöbbermeyer 2005]. This approach makes use of the insight that the
frequency of a motif will only decrease as it is grown, giving an upper bound on the frequency
of any motif derived from it. While we employ a more complex compressive utility function than
their frequency-based utility, our upper bound is based on a similar insight that larger abstractions
will match at a subset of the locations.

7.5 Comparison to babble

babble [Cao et al. 2023] is concurrent work in library learning that likewise adopts the compres-
sion objective from DreamCoder. While babble focuses primarily on expressive library learning
through an algorithm that can reason over semantic equivalences represented through e-graphs,
Stitch focuses primarily on efficient library learning through a parallel anytime branch-and-bound
algorithm.

Stitch synthesizes the maximally-compressive abstraction for a corpus of programs through a
branch-and-bound top-down search, computing an upper bound on the compression of any partially-
constructed abstraction to guide and prune the search. In contrast, babble operates on an e-graph
representing many equivalent corpora and uses anti-unification to propose candidate abstractions
and a custom e-graph beam-search extraction algorithm to select a maximally-compressive set of
abstractions from the proposal.

At a high level, Stitch aims to be efficient while babble aims to be expressive. The key differences
between the algorithms are:
• Efficiency: On DreamCoder’s benchmarks, babble is 10-100x faster than DreamCoder while
Stitch is 1,000-10,000x faster than DreamCoder. Unlike babble, Stitch is an anytime
algorithm that can be stopped early for a best-so-far result.

• Expressivity: babble can learn libraries modulo equational theories, allowing it to find com-
mon semantic abstractions despite syntactic differences in the programs. Stitch only explores
non-syntactic equivalences preliminarily in the PyStitch prototype with the DreamCoder
beta-inversion rewrite rule (Section 5 and Section 6.5).

• Jointly learning a library: babble can learn multiple abstractions at once that jointly pro-
vide compression, while DreamCoder and Stitch repeatedly learn a single abstraction at a
time. Stitch provides an optimality guarantee on each abstraction learned while babble
approximates the joint objective through a beam search.

These two approaches has advantages and disadvantages, and we believe that there is strong
potential in combining the two.

8 CONCLUSION AND FUTUREWORK

We have presented corpus-guided top-down synthesis (CTS)—an efficient new algorithm for syn-
thesizing libraries of functional abstractions capturing common functionality within a corpus of
programs. CTS directly synthesizes the abstractions, rather than exposing them through a series of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:29

rewrites as is done by deductive systems. Key to its performance is the usage of a guiding utility
function, which allows CTS to effectively search (and prune out large portions of) the space of
possible abstractions.

We implement this algorithm in Stitch, an open-source library learning tool which exposes both
Rust and Python bindings7. We evaluate Stitch across five experimental settings, demonstrating
that it learns comparably compressive libraries with 2 orders of magnitude less memory and
3-4 orders of magnitude less time compared to the state-of-the-art deductive algorithm of Ellis
et al. 2021. We also find that Stitch scales to learning libraries of abstractions from much larger
datasets of deeper program trees than is possible with prior work, and that the anytime property
of corpus-guided top-down search — abstractions discovered via top-down search are already
compressive early in search and improve as it continues — offers the opportunity for high-quality
library learning even in complex domains through early search termination.
There remain many open problems and exciting directions in abstraction learning. One major

direction is extending the CTS approach to handle reasoning over more general deductive rewrite
systems, like those encoded in egg [Willsey et al. 2021] as babble does [Cao et al. 2023] (also see
Section 7.5). The PyStitch prototype presented in Section 5 only works with a single rewrite rule
(beta-inversion) and uses an approximate utility without an optimality guarantee. This is because
it is challenging to adapt the upper bound used by Stitch to version spaces or e-graphs due to the
trade-off between the compression gained from equational rewrites and compression gained from
abstraction learning.

The speedup afforded by Stitch may allow for new applications of abstraction learning as well,
as it can now be used as an inexpensive subroutine that can be called much more frequently than
prior algorithms. To further extend its range of applications, CTS could also be adapted to finding
abstractions in data structures beyond program trees, such as dataflow DAGs and more general
graph structures like molecules, if the bounds and matching can be adapted. Finally, while we work
with fairly large lambda calculus programs in this work, there is a clear gap in scale between these
programs and those in an actual codebase, so exploring applications of CTS to real-world code is
an exciting direction.

ACKNOWLEDGMENTS

We thank A. Lew and J. Andreas for helpful discussions, and J. Feser and I. Kuraj for feedback on
the manuscript. M.B. and G.G are supported by the National Science Foundation (NSF) Graduate
Research Fellowship under Grant No. 2141064. M.B. is also supported by the Defense Advanced Re-
search Projects Agency (DARPA) under the SDCPS Contract FA8750-20-C-0542. T.X.O. is supported
by Herbert E. Grier (1933) and Dorothy J. Grier Fund Fellowship. C.W. and J.B.T. are supported
by AFOSR under grant number FA9550-19-1-0269, the MIT Quest for Intelligence, the MIT-IBM
Watson AI Lab, ONR Science of AI, and DARPA Machine Common Sense. G.G. is also supported
by the MIT Presidential Fellowship. A.S. is supported by the NSF under Grant No. 1918839. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of sponsors.

7https://github.com/mlb2251/stitch

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://github.com/mlb2251/stitch

41:30 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

REFERENCES

Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1989. Explicit substitutions. In Proceedings of the 17th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 31–46.
Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for big code

and naturalness. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–37.
Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from source code. In Proceedings of the 22nd acm sigsoft

international symposium on foundations of software engineering. 472–483.
Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2016. Deepcoder: Learning to

write programs. arXiv preprint arXiv:1611.01989 (2016).
Rod M Burstall and John Darlington. 1977. A transformation system for developing recursive programs. Journal of the ACM

(JACM) 24, 1 (1977), 44–67.
David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. 2023. babble:

Learning Better Abstractions with E-Graphs and Anti-Unification. Proc. ACM Program. Lang. POPL (2023). https:
//doi.org/10.1145/3571207

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-modal synthesis of regular expressions. In
Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,

PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 487–502. https://doi.org/
10.1145/3385412.3385988

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Execution-guided neural program synthesis. In International Conference on

Learning Representations.
Adam Chlipala, Benjamin Delaware, Samuel Duchovni, Jason Gross, Clément Pit-Claudel, Sorawit Suriyakarn, Peng Wang,

and Katherine Ye. 2017. The end of history? Using a proof assistant to replace language design with library design. In
2nd Summit on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Geoffrey Chu and Peter J. Stuckey. 2015. Dominance breaking constraints. Constraints An Int. J. 20, 2 (2015), 155–182.
https://doi.org/10.1007/s10601-014-9173-7

Andrew Cropper. 2019. Playgol: Learning programs through play. arXiv preprint arXiv:1904.08993 (2019).
Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manip-

ulation, with application to the Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75. Elsevier,
381–392.

Eyal Dechter, Jonathan Malmaud, Ryan Prescott Adams, and Joshua B Tenenbaum. 2013. Bootstrap learning via modular
concept discovery. In Proceedings of the International Joint Conference on Artificial Intelligence. AAAI Press/International
Joint Conferences on Artificial Intelligence.

Gilles Dowek, Thérèse Hardin, and Claude Kirchner. 1995. Higher-Order Unification via Explicit Substitutions. In Proceedings

of the Tenth Annual Symposium on Logic in Computer Science, D. Kozen (Ed.). IEEE Computer Society Press, San Diego,
California, 366–374.

Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. 1996. Unification via Explicit Substitutions: The Case
of Higher-Order Patterns. In Proceedings of the Joint International Conference and Symposium on Logic Programming,
M. Maher (Ed.). MIT Press, Bonn, Germany, 259–273.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-
Lezama, and Joshua B Tenenbaum. 2020. Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep
bayesian program learning. arXiv preprint arXiv:2006.08381 (2020).

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar-
Lezama, and Joshua B Tenenbaum. 2021. Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep
library learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. 835–850.
Kevin M Ellis, Lucas E Morales, Mathias Sablé-Meyer, Armando Solar Lezama, and Joshua B Tenenbaum. 2018. Library

learning for neurally-guided bayesian program induction. (2018).
Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theor. Comput. Sci. 103, 2 (sep 1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7
John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. ACM SIGPLAN Notices 50, 6 (2015), 229–239.
Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals. 2018. Synthesizing programs for images

using reinforced adversarial learning. In International Conference on Machine Learning. PMLR, 1666–1675.
Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H Muggleton, Ute Schmid, and Benjamin Zorn. 2015.

Inductive programming meets the real world. Commun. ACM 58, 11 (2015), 90–99.
Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum Cost

Paths. IEEE Trans. Syst. Sci. Cybern. 4, 2 (1968), 100–107. https://doi.org/10.1109/TSSC.1968.300136

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://doi.org/10.1145/3571207
https://doi.org/10.1145/3571207
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1007/s10601-014-9173-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1109/TSSC.1968.300136

Top-Down Synthesis for Library Learning 41:31

Robert John Henderson. 2013. Cumulative learning in the lambda calculus. (2013).
Gérard Huet. 1975. A Unification Algorithm for Typed 𝜆-Calculus. Theoretical Computer Science 1 (1975), 27–57.
Irvin Hwang, Andreas Stuhlmüller, and Noah D Goodman. 2011. Inducing probabilistic programs by Bayesian program

merging. arXiv preprint arXiv:1110.5667 (2011).
Toshihide Ibaraki. 1977. The Power of Dominance Relations in Branch-and-Bound Algorithms. J. ACM 24, 2 (1977), 264–279.

https://doi.org/10.1145/322003.322010
Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer. 2019. Learning programmatic idioms for scalable semantic parsing.

arXiv preprint arXiv:1904.09086 (2019).
Thomas Johnsson. 1985. Lambda Lifting: Treansforming Programs to Recursive Equations. In Functional Programming

Languages and Computer Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings (Lecture Notes in

Computer Science, Vol. 201), Jean-Pierre Jouannaud (Ed.). Springer, 190–203. https://doi.org/10.1007/3-540-15975-4_37
R Kenny Jones, David Charatan, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. 2021. ShapeMOD: macro operation

discovery for 3D shape programs. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.
Manos Koukoutos, Mukund Raghothaman, Etienne Kneuss, and Viktor Kuncak. 2017. On repair with probabilistic attribute

grammars. arXiv preprint arXiv:1707.04148 (2017).
Michihiro Kuramochi and George Karypis. 2001. Frequent Subgraph Discovery. In Proceedings of the 2001 IEEE International

Conference on Data Mining, 29 November - 2 December 2001, San Jose, California, USA, Nick Cercone, Tsau Young Lin, and
Xindong Wu (Eds.). IEEE Computer Society, 313–320. https://doi.org/10.1109/ICDM.2001.989534

Michihiro Kuramochi and George Karypis. 2004. Finding Frequent Patterns in a Large Sparse Graph. In Proceedings of

the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004, Michael W.
Berry, Umeshwar Dayal, Chandrika Kamath, and David B. Skillicorn (Eds.). SIAM, 345–356. https://doi.org/10.1137/1.
9781611972740.32

A. H. Land and A. G. Doig. 1960. An Automatic Method of Solving Discrete Programming Problems. Econometrica 28, 3
(1960), 497–520. http://www.jstor.org/stable/1910129

Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. 2003. Programming by demonstration using version
space algebra. Machine Learning 53, 1 (2003), 111–156.

Miguel Lázaro-Gredilla, Dianhuan Lin, J Swaroop Guntupalli, and Dileep George. 2019. Beyond imitation: Zero-shot task
transfer on robots by learning concepts as cognitive programs. Science Robotics 4, 26 (2019), eaav3150.

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing regular expressions from examples for introductory automata
assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts

and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November 1, 2016, Bernd Fischer and Ina Schaefer
(Eds.). ACM, 70–80. https://doi.org/10.1145/2993236.2993244

Percy Liang, Michael I Jordan, and Dan Klein. 2010. Learning programs: A hierarchical Bayesian approach. In Proceedings of

the 27th International Conference on Machine Learning (ICML-10). 639–646.
Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B Tenenbaum, and Stephen H Muggleton. 2014. Bias reformulation for

one-shot function induction. (2014).
Zohar Manna and Richard Waldinger. 1980. A deductive approach to program synthesis. ACM Transactions on Programming

Languages and Systems (TOPLAS) 2, 1 (1980), 90–121.
Dale Miller. 1991. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification.

Journal of Logic and Computation 1, 4 (1991), 497–536.
Dale Miller. 1992. Unification under a Mixed Prefix. Journal of Symbolic Computation 14 (1992), 321–358.
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network Motifs: Simple Building

Blocks of Complex Networks. Science 298, 5594 (2002), 824–827. https://doi.org/10.1126/science.298.5594.824
arXiv:https://www.science.org/doi/pdf/10.1126/science.298.5594.824

Tom M Mitchell. 1977. Version spaces: A candidate elimination approach to rule learning. In Proceedings of the 5th

international joint conference on Artificial intelligence-Volume 1. 305–310.
David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell. 2016. Branch-and-bound algorithms: A

survey of recent advances in searching, branching, and pruning. Discret. Optim. 19 (2016), 79–102. https://doi.org/10.
1016/j.disopt.2016.01.005

Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B Tenenbaum, and Armando Solar-Lezama. 2021.
Representing Partial Programs with Blended Abstract Semantics. In International Conference on Learning Representations.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types.
ACM SIGPLAN Notices 51, 6 (2016), 522–538.

Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
107–126.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://doi.org/10.1145/322003.322010
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1109/ICDM.2001.989534
https://doi.org/10.1137/1.9781611972740.32
https://doi.org/10.1137/1.9781611972740.32
http://www.jstor.org/stable/1910129
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1126/science.298.5594.824
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.298.5594.824
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/j.disopt.2016.01.005

41:32 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Falk Schreiber and Henning Schwöbbermeyer. 2005. Frequency Concepts and Pattern Detection for the Analysis of Motifs
in Networks. Trans. Comp. Sys. Biology 3 (2005), 89–104. https://doi.org/10.1007/11599128_7

Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. 2020. Learning Differentiable
Programs with Admissible Neural Heuristics. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 4940–4952. https://proceedings.
neurips.cc/paper/2020/file/342285bb2a8cadef22f667eeb6a63732-Paper.pdf

Claude Elwood Shannon. 1948. A mathematical theory of communication. The Bell system technical journal 27, 3 (1948),
379–423.

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov. 2019. Program synthesis and semantic parsing
with learned code idioms. Advances in Neural Information Processing Systems 32 (2019).

Thoralf Skolem. 1920. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Bewiesbarkeit mathematischer
Sätze nebst einem Theorem über dichte Mengen. (1920).

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg:
Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages. https:
//doi.org/10.1145/3434304

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. 2021. Leveraging language to learn program
abstractions and search heuristics. In International Conference on Machine Learning. PMLR, 11193–11204.

Catherine Wong, William McCarthy, Gabriel Grand, Jacob Andreas, Joshua B Tenenbaum, Robert Hawkins, and Judy Fan.
2022. Identifying concept libraries from language about object structure. In CogSci. To appear.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://doi.org/10.1007/11599128_7
https://proceedings.neurips.cc/paper/2020/file/342285bb2a8cadef22f667eeb6a63732-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/342285bb2a8cadef22f667eeb6a63732-Paper.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

Top-Down Synthesis for Library Learning 41:33

A CORPUS-GUIDED TOP-DOWN SEARCH: FULL ALGORITHM

In this appendix, we give an expansive description of the full corpus-guided top-down search (CTS)
algorithm to ease re-implementation.
The full algorithm is given in Algorithm 1. It takes as input a corpus of programs P, a utility

function 𝑈P,R (𝐴), and utility upper bound function 𝑈P,R (𝐴??). The algorithm searches for and
returns the complete abstraction𝐴𝑏𝑒𝑠𝑡 that maximizes the utility function. The algorithm maintains
a priority queue 𝑄 of partial abstractions ordered by their utility upper bound (or alternatively
a custom priority function), a best complete abstraction so-far 𝐴𝑏𝑒𝑠𝑡 , and a corresponding best
utility so far 𝑈𝑏𝑒𝑠𝑡 for that abstraction. The priority queue is initialized to hold the single-hole
partial abstraction ??, from which any abstraction can be derived. 𝐴𝑏𝑒𝑠𝑡 and𝑈𝑏𝑒𝑠𝑡 are initialized
as the best arity-zero abstraction and corresponding utility (line 2), since arity-zero abstractions
can be quickly and completely enumerated (each unique, closed subexpression in the corpus is an
arity-zero abstraction).
We then proceed to the core loop of the algorithm from lines 4-29. At each step of this loop

we pop the highest-priority partial abstraction 𝐴?? off of the priority queue and process it. We
discard 𝐴?? if its utility upper bound doesn’t exceed our best utility found so far (lines 6-8). We
then choose a hole ℎ in 𝐴?? to expand with the procedure Choose-Hole. Choose-Hole can be a
custom function; we find from preliminary experiments on a subset of the datasets that choosing
the most recently introduced hole is effective in practice.
The algorithm then uses the procedure Expansions to iterate over all possible single step

expansions of the hole ℎ in 𝐴??, such as replacing the hole with + or with (app ?? ??). For each
expanded abstraction 𝐴′??, it is easy to compute its set of match locationsMatches(P, 𝐴′??) since
we know this will be a subset of the match locations of 𝐴?? (and these will be disjoint subsets,
except when expanding into an abstraction variable 𝛼). We can easily inspect the relevant subtree
at each match location of the original abstraction to see which expansions are valid and which
match locations will be preserved by a given expansion. Note that an expansion to a free variable
can be pruned immediately, as any resulting abstraction will not be well-formed.
When expanding to an abstraction variable 𝛼 , if 𝛼 is a new variable not already present in the

partial abstraction, the set of match locations is unchanged. If 𝛼 is an existing abstraction variable
then this is a situation where the same variable is being used in more than one place, as in the square
abstraction (𝜆𝛼. * 𝛼 𝛼). In this case we restrict the match locations to the subset of locations where
within a location all instances of 𝛼 match against the same subtree. Additionally, if a maximum arity
is provided then an expansion that causes the abstraction to exceed this limit is not considered.
When considering each possible expanded abstraction 𝐴′??, there is room for strong corpus-

guidance. First, we don’t need to consider any expansions that would result in zero match locations
since all abstractions in this branch of search will have zero rewrite locations per Lemma 2 (lines
11-13). Furthermore, we use 𝑈P,R (𝐴′??) to upper bound the utility achievable in this branch of
search and discard it if it is less than our best utility so far (lines 14-16). Since each 𝐴′?? covers a
disjoint set of match locations (except in the case of expanding into an abstraction variable), the set
of match locations often drops rapidly and can allow for the calculation of a tight upper bound
depending on the utility function. As a final step of pruning, if we can identify that 𝐴′?? is strictly
dominated by some other abstraction 𝐴′′??, we may discard 𝐴′?? (lines 17-19). Note additionally that
arity-zero abstractions were precomputed, then abstractions that match at a single location are safe
to prune as well (as long as they don’t have free variables) as arity-zero abstractions are always
superior for single match locations.
For any partial abstraction 𝐴′?? that has not been pruned, we then check whether it is a com-

plete abstraction (there are no remaining holes) or whether it is still a partial abstraction. Partial

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:34 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

abstractions get pushed to the priority queue ranked by their utility upper bound, and complete
abstractions are used to update 𝐴𝑏𝑒𝑠𝑡 and𝑈𝑏𝑒𝑠𝑡 if they have a higher utility than any prior complete
abstractions.
Once there are no more partial abstractions remaining in the priority queue, the algorithm

terminates. Note that since the algorithmmaintains a best abstraction so-far, it can also be terminated
early, making it an any-time algorithm. We also note that this algorithm is amenable to parallelization
as it can be easily parallelized over the while loop on lines 4-29, especially since the algorithm
remains sound even when the upper bound𝑈𝑏𝑒𝑠𝑡 used pruning is not always up to date.

This algorithm can be iterated to build up a library of abstractions.
Finally note that in our implementation, we employ structural hashing to simplify equality

checks between subtrees and avoid re-doing work on multiple identical copies of a subtree. Our
complete implementation of CTS for compression is provided at https://github.com/mlb2251/stitch.

Algorithm 1 Corpus-guided top-down abstraction synthesis. Color-coded: Upper bound pruning,
Zero-usage pruning, Strict dominance pruning
Input: Corpus of input programs P, utility function 𝑈P,R (𝐴), and utility upper bound function

𝑈P,R (𝐴??)
Output: The maximally compressive abstraction 𝐴𝑏𝑒𝑠𝑡

1: 𝑄 ← Priority-Queue { ?? } ⊲ New priority queue with the single partial abstraction ??
2: 𝐴𝑏𝑒𝑠𝑡 ← Best-Arity-Zero-Abstraction(P) ⊲ Initialize best abstraction so far
3: 𝑈𝑏𝑒𝑠𝑡 ← 𝑈P,R (𝐴𝑏𝑒𝑠𝑡)
4: while non-empty(𝑄) do
5: 𝐴?? ← pop-max(𝑄) ⊲ Next partial abstraction to expand
6: if 𝑈P,R (𝐴??) ≤ 𝑈𝑏𝑒𝑠𝑡 then

7: continue ⊲ Upper bound pruning
8: end if

9: ℎ ← Choose-Hole(𝐴??) ⊲ Choose a hole to expand
10: for (𝐴′??, 𝑀 ′) ∈ Expansions(𝐴??, ℎ,P) do ⊲ abstraction 𝐴′?? and match locations𝑀 ′
11: if length(𝑀 ′) == 0 then

12: continue ⊲ No match locations in corpus
13: end if

14: if 𝑈P,R (𝐴′??) ≤ 𝑈𝑏𝑒𝑠𝑡 then

15: continue ⊲ Upper bound pruning
16: end if

17: if strictly-dominated(𝐴′??,P) then
18: continue ⊲ Strict dominance pruning
19: end if

20: if has-holes(𝐴𝑒) then
21: 𝑄 ← 𝑄 ∪𝐴′?? ⊲ add partial abstraction to heap
22: else

23: if 𝑈P,R (𝐴′??) > 𝑈𝑏𝑒𝑠𝑡 then

24: 𝑈𝑏𝑒𝑠𝑡 ← 𝑈P,R (𝐴′??) ⊲ new best complete abstraction
25: 𝐴𝑏𝑒𝑠𝑡 ← 𝐴′??
26: end if

27: end if

28: end for

29: end while

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

https://github.com/mlb2251/stitch

Top-Down Synthesis for Library Learning 41:35

B PROOF OF CORRECTNESS OF LAMBDAUNIFY

As introduced in Section 3, LambdaUnify(𝐴, 𝑒) returns a mapping from abstraction variables and
holes to expressions [𝛼𝑖 → 𝑒 ′𝑖 , . . . , ??𝑗 → 𝑢 ′𝑗 , . . .] such that

(𝜆𝛼𝑖 𝜆??𝑗 𝐴) 𝑒 ′𝑖 . . . 𝑢 ′𝑗 . . . = 𝑒 (19)
through beta reduction. The LambdaUnify procedure is given in Fig. 4 and the definition of beta
reduction with a modified upshifting operator is given in Fig. 5.

We can write Eq. (19) in terms of substitution as

[𝛼𝑖 → 𝑒 ′𝑖 , . . . , ??𝑗 → 𝑢 ′𝑗 , . . .] ◦𝐴 = 𝑒 (20)
Which can in turn be written in terms of LambdaUnify as

LambdaUnify(𝐴, 𝑒) ◦𝐴 = 𝑒 (21)
To prove the correctness of LambdaUnify, we must show that Eq. (21) holds for all 𝐴 and 𝑒 .

We do this in two ways: a written proof (below) of our correctness theorem (Theorem B.1), and a
machine-verifiable proof in Coq. The Coq proof is given in stitch.v in the supplementary material
and was proven with CoqIDE 8.15.2. The meanings of the definitions and lemmas in the Coq
proof are commented. The Coq proof differs from the written proof in places because encoding
the proof in Coq required coming up with some representations that worked well for Coq, though
these differences are limited. For example, the Coq proof requires fully formalizing the behavior of
Merge and proofs related to it which is more simply explained in the written proof. When lemmas
in the written proof below correspond directly to lemmas in the Coq proof, the corresponding Coq
lemma is indicated in the written proof below.

B.1 Well-formedness

We formalize a notion ofwell-formedness to capture the set of expressions that are accessible starting
from an expression with no &𝑖 variables then applying any series of upshifts and downshifts. We
define WF𝑑 (𝑒), the well-formedness of an expression 𝑒 at a depth 𝑑 , as follows:

WF𝑑 𝜆.𝑏 = WF𝑑+1 𝑏
WF𝑑 (𝑓 𝑥) = WF𝑑 𝑓 ∧WF𝑑 𝑥

WF𝑑 $𝑖 = ⊤

WF𝑑 &𝑖 =

{
⊤, if 𝑖 < 𝑑

⊥, if 𝑖 ≥ 𝑑

WF𝑑 𝑡 = ⊤, for 𝑡 ∈ Gsym

Note that trivially any expression 𝑒 without any &𝑖 variables is well formed, as &𝑖 variables are
the only source of ⊥ in this definition.

If every expression in a mapping 𝑙 is well-formed, we say that the mapping itself is well-formed,
written (WFMap 𝑙).

B.2 Relevant Lemmas

The following two lemmas show that upshifting and downshifting preservewell-formedness.

In Coq these lemmas are upshift_wf and downshift_wf.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:36 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Lemma 3. ∀𝑒. ∀𝑑. WF𝑑 𝑒 =⇒ WF𝑑 ↑𝑑 𝑒

Proof. We proceed by induction on e.

Case 𝑒 = 𝜆. 𝑏. Our goal is

WF𝑑 ↑𝑑 𝜆.𝑏

We can move ↑𝑑 and WF𝑑 into the lambda by unfolding their definitions to get

WF𝑑+1 ↑𝑑+1 𝑏
We also have the premise WF𝑑 𝜆.𝑏, where we can likewise move the WF𝑑 into the lambda to get

WF𝑑+1 𝑏. The inductive hypothesis ∀𝑑. WF𝑑 𝑏 =⇒ WF𝑑 ↑𝑑 𝑏 can be instantiated with 𝑑 as 𝑑 + 1
to get WF𝑑+1 𝑏 =⇒ WF𝑑+1 ↑𝑑+1 𝑏, the conclusion of which is precisely our goal and the premise
of which is precisely our other premise.

Case 𝑒 = 𝑓 𝑥 . Our goal is

WF𝑑 ↑𝑑 (𝑓 𝑥)
We can move ↑𝑑 and WF𝑑 into the application by unfolding their definitions to get

(WF𝑑 ↑𝑑 𝑓) ∧ (WF𝑑 ↑𝑑 𝑥)
We can use our inductive hypotheses WF𝑑 𝑓 =⇒ WF𝑑 ↑𝑑 𝑓 to prove the left side of this

conjunction if we can proveWF𝑑 𝑓 . We have the premise that WF𝑑 (𝑓 𝑥) from this overall induction
case, which by definition of WF𝑑 can only be true if WF𝑑 𝑓 ∧WF𝑑 𝑑 . Thus we can prove the left
side of the conjunction, and the proof of the right side is identical with 𝑓 replaced by 𝑥 using the
other inductive hypothesis.

Case 𝑒 = $𝑖 . Our goal is

WF𝑑 ↑𝑑 $𝑖

We will handle this in 2 cases:
• Case 𝑖 < 𝑑 .

WF𝑑 ↑𝑑 $𝑖

= WF𝑑 $𝑖

This is true because $i indices are always well-formed.
• Case 𝑖 ≥ 𝑑 .

WF𝑑 ↑𝑑 $𝑖

= WF𝑑 $(𝑖 + 1)
This is true because $i indices are always well-formed.

Case 𝑒 = &𝑖 . Our goal is

WF𝑑 ↑𝑑 &𝑖

We will handle our goal in 2 cases:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:37

• Case 𝑖 + 1 ≠ 𝑑 .
WF𝑑 ↑𝑑 $𝑖

= WF𝑑 &(𝑖 + 1)
We know from our premise that WF𝑑 &𝑖 which means 𝑖 < 𝑑 , so 𝑖 + 1 ≤ 𝑑 . Combining this
with our knowledge from the case branch that 𝑖 + 1 ≠ 𝑑 , we know that 𝑖 + 1 < 𝑑 which means
that &(𝑖 + 1) is well formed.
• Case 𝑖 + 1 = 𝑑 .

WF𝑑 ↑𝑑 &𝑖

= WF𝑑 $(𝑖 + 1)
This is true because $i indices are always well-formed.

Case 𝑒 = 𝑡 . Our goal is WF𝑑 ↑𝑑 𝑡 which simplifies by definition of ↑𝑑 to WF𝑑 𝑡 which is true by
definition of WF𝑑 .

□

Lemma 4. ∀𝑒. ∀𝑑. WF𝑑 𝑒 =⇒ WF𝑑 ↓𝑑 𝑒

Proof. We proceed by induction on e. The cases 𝑒 = 𝑡 , 𝑒 = (𝑓 𝑥) and 𝑒 = 𝜆.𝑏 are identical to
those in Lemma 3 but with ↑ replaced with ↓ so they will be omitted.

Case 𝑒 = $𝑖 . Our goal is

WF𝑑 ↓𝑑 $𝑖
We will handle this in 3 cases:
• Case 𝑖 < 𝑑 .

WF𝑑 ↓𝑑 $𝑖

= WF𝑑 $𝑖
This is true because $i indices are always well-formed.
• Case 𝑖 > 𝑑 .

WF𝑑 ↓𝑑 $𝑖

= WF𝑑 $(𝑖 − 1)
This is true because $i indices are always well-formed.
• Case 𝑖 = 𝑑 .

WF𝑑 ↓𝑑 $𝑖

= WF𝑑 &(𝑖 − 1)
Since 𝑖 = 𝑑 we know that 𝑖 − 1 < 𝑑 which means &(𝑖 − 1) is well-formed.

Case 𝑒 = &𝑖 . Our goal is

WF𝑑 ↓𝑑 &𝑖
which simplifies to

WF𝑑 &(𝑖 − 1)
We know from our premise that WF𝑑 &𝑖 so 𝑖 < 𝑑 which means 𝑖−1 < 𝑑 so &(𝑖−1) is well-formed.

□

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:38 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

The following lemma shows that upshifting is an inverse of downshifting. In Coq this
lemma is upshift_downshift.

Lemma 5. ∀𝑒. ∀𝑑. WF𝑑 𝑒 =⇒ ↑𝑑↓𝑑 𝑒 = 𝑒

Proof. We proceed by induction on 𝑒 .

Case 𝑒 = 𝜆. 𝑏. Our goal is

↑𝑑↓𝑑 𝜆. 𝑏 = 𝜆. 𝑏

By the definitions of ↑𝑑 and ↓𝑑 we can propagate them into the body of a lambda while incre-
menting 𝑑 :

𝜆. ↑𝑑+1↓𝑑+1 𝑏 = 𝜆. 𝑏

We also have the additional premise WF𝑑 𝜆.𝑏 which simplifies to WF𝑑+1 𝑏.
Since our inductive hypothesis ∀𝑑. WF𝑑 𝑏 =⇒ ↑𝑑↓𝑑 𝑏 = 𝑏 is universally quantified over 𝑑 we

can instantiate it with 𝑑 + 1 in place of 𝑑 and discharge its precondition with our other premise
WF𝑑+1 𝑏 to get ↑𝑑+1↓𝑑+1 𝑏 = 𝑏 and apply this to our goal to get

𝜆. 𝑏 = 𝜆. 𝑏

which is trivially true.

Case 𝑒 = 𝑓 𝑥 . Our goal is

↑𝑑↓𝑑 (𝑓 𝑥) = 𝑓 𝑥

By the definitions of ↑𝑑 and ↓𝑑 we can propagate them into both sides of the application:

(↑𝑑↓𝑑 𝑓) (↑𝑑↓𝑑 𝑥) = 𝑓 𝑥

We also have the additional premise WF𝑑 (𝑓 𝑥) can be broken into the two premises WF𝑑 𝑓 and
WF𝑑 𝑥 .

We can then apply our inductive hypotheses ∀𝑑. WF𝑑 𝑓 =⇒ ↑𝑑↓𝑑 𝑓 = 𝑓 and ∀𝑑. WF𝑑 𝑥 =⇒
↑𝑑↓𝑑 𝑥 = 𝑥 with these premises to rewrite our goal to

𝑓 𝑥 = 𝑓 𝑥

which is trivially true.

Case 𝑒 = $𝑖 . Our goal is

↑𝑑↓𝑑 $𝑖 = $𝑖
We will handle this in 3 cases:
• Case 𝑖 < 𝑑 .

↑𝑑↓𝑑 $𝑖 = $𝑖
Unfold definition of ↓𝑑

↑𝑑 $𝑖 = $𝑖

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:39

Unfold definition of ↑𝑑
$𝑖 = $𝑖

• Case 𝑖 > 𝑑 .
↑𝑑↓𝑑 $𝑖 = $𝑖

Unfold definition of ↓𝑑
↑𝑑 $(𝑖 − 1) = $𝑖

Unfold definition of ↑𝑑 noting that (𝑖 − 1) ≥ 𝑑

$((𝑖 − 1) + 1) = $𝑖

Simplify
$𝑖 = $𝑖

• Case 𝑖 = 𝑑 .
↑𝑑↓𝑑 $𝑖 = $𝑖

Unfold definition of ↓𝑑
↑𝑑 &(𝑖 − 1) = $𝑖

Unfold definition of ↑𝑑 noting that (𝑖 − 1) + 1 = 𝑑

$((𝑖 − 1) + 1) = $𝑖

Simplify
$𝑖 = $𝑖

Case 𝑒 = &𝑖 . Our goal is

↑𝑑↓𝑑 &𝑖 = &𝑖
Unfolding the definition of ↓𝑑 yields

↑𝑑 &(𝑖 − 1) = &𝑖
Since we know that WF𝑑 &𝑖 by our premise, we know that 𝑖 < 𝑑 so (𝑖−1) +1 < 𝑑 so (𝑖−1) +1 ≠ 𝑑

so ↑𝑑 unfolds to:

&((𝑖 − 1) + 1) = &𝑖
which simplifies to

&𝑖 = &𝑖
which is trivially true.

Case 𝑒 = 𝑡 . Our goal is

↑𝑑↓𝑑 𝑡 = 𝑡

Neither ↑𝑑 nor ↓𝑑 have any effect on a grammar primitive 𝑡 , so this is trivially true.
□

The following lemma shows that any result of LambdaUnify is a well-formed mapping.

In Coq this lemma is called lu_wf.

Lemma 6. ∀𝐴. ∀𝑒.WFMap LambdaUnify(𝐴, 𝑒)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:40 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Proof. This is a straightforward proof by induction. In the 𝛼𝑖 and and ??𝑖 cases LambdaUnify
adds expressions from the original expression to the mapping, which are well-formed as they
can’t contain &𝑖 variables. In the lambda case DownshiftAll shifts variables using ↓ which
is guaranteed to preserve well-formedness by Lemma 4. In the application case merge simply
combines mappings from the function and argument calls to LambdaUnify which are well-formed
by induction, resulting in an overall well-formed mapping. □

The following lemma follows from Lemma 5 and shows that UpshiftAll is an inverse of

DownshiftAll. In Coq this lemma is upshift_all_downshift_all.

Lemma 7. WFMap 𝑙 =⇒ UpshiftAll(DownshiftAll(𝑙)) = 𝑙

Proof. Writing 𝑙 as [𝛼𝑖 → 𝑒 ′𝑖 , ??𝑗 → 𝑢 ′𝑗 , ...] and unfolding the definitions of UpshiftAll
DownshiftAll we get:

[𝛼𝑖 → ↑0↓0 𝑒
′
𝑖 , ??𝑗 → ↑0↓0 𝑢

′
𝑗 , ...] = [𝛼𝑖 → 𝑒 ′𝑖 , ??𝑗 → 𝑢 ′𝑗 , ...]

This equality will hold if ↑0↓0 𝑢
′
𝑗 = 𝑢 ′𝑗 and ↑0↓0 𝑒

′
𝑖 = 𝑒 ′𝑖 for all 𝑢

′
𝑗 and 𝑒

′
𝑖 . WFMap 𝑙 tells us that all

expressions 𝑢 ′𝑗 and 𝑒
′
𝑖 are well-formed and thus satisfy the precondition of Lemma 5, which proves

these equalities true.
□

The following two lemmas allow us to "forget" one side of a mergewhen it won’t have any

effect on the substitution. In Coq the first lemma is merge_forget3 and the second is captured
by the definition Compatible.

Lemma 8. If 𝑙1 is a mapping that binds every abstraction variable and hole in𝐴, then merge(𝑙1, 𝑙2) ◦
𝐴 = 𝑙1 ◦𝐴.

Proof. 𝑙1 already assigns to every abstraction variable and hole, and merging in 𝑙2 can’t overwrite
these assignments since merge fails when the same variable or hole is assigned to two different
expressions. Thus merging in 𝑙2 has no effect on the resulting expression from substitution. □

Lemma 9. If 𝑙2 is a mapping that binds every abstraction variable and hole in𝐴, then merge(𝑙1, 𝑙2) ◦
𝐴 = 𝑙2 ◦𝐴.

Proof. This proof is identical in structure to Lemma 8. 𝑙2 already assigns to every abstraction
variable and hole, and merging in 𝑙1 can’t overwrite these assignments since merge fails when the
same variable or hole is assigned to two different expressions. Thus merging in 𝑙1 has no effect on
the resulting expression from substitution. □

The following lemma shows that any result of LambdaUnify satisfies the precondition

of Lemma 9 and Lemma 8.

Lemma 10. LambdaUnify(𝐴, 𝑒) returns a mapping that binds all abstraction variables 𝛼𝑖 and all

holes ??𝑖 in 𝐴.

Proof. This is a straightforward proof by induction. In the 𝛼𝑖 and and ??𝑖 cases LambdaUnify
binds the variable and hole respectively, in the lambda case DownshiftAll has no effect on which
abstraction variables are bound (and it binds all the variables in the body by induction), and in the
application case merge results in combining the function and argument mappings (which bind all
variables by induction) to result in a mapping which binds all variables that appear in both the
function and argument. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

Top-Down Synthesis for Library Learning 41:41

B.3 Correctness Theorem

In Coq this theorem is called correctness.

Theorem B.1. ∀𝐴. ∀𝑒. LambdaUnify(𝐴, 𝑒) ◦𝐴 = 𝑒

Proof. We proceed by induction over the proof tree of LambdaUnify(𝐴, 𝑒).

Case U-AbsVar. Our goal is LambdaUnify(𝐴, 𝛼) ◦ 𝛼 = 𝑒 which simplifies by definition of
LambdaUnify to [𝛼 → 𝑒] ◦ 𝛼 = 𝑒 which is true by the definition of substitution.

Case U-Hole. Our goal is LambdaUnify(𝐴, ??) ◦ ?? = 𝑒 which simplifies by definition of
LambdaUnify to [??→ 𝑒] ◦ ?? = 𝑒 which is true by the definition of substitution.

Case U-App. Our goal is

LambdaUnify(𝐴1 𝐴2, 𝑒1 𝑒2) ◦ (𝐴1 𝐴2) = 𝑒1 𝑒2

This simplifies by definition of LambdaUnify to

merge(LambdaUnify(𝐴1, 𝑒1), LambdaUnify(𝐴2, 𝑒2)) ◦ (𝐴1 𝐴2) = 𝑒1 𝑒2

We can distribute the substitution over the application (by definition of substitution in Fig. 5
(Left)) to get

((merge(LambdaUnify(𝐴1, 𝑒1), LambdaUnify(𝐴2, 𝑒2)) ◦𝐴1)
(merge(LambdaUnify(𝐴1, 𝑒1), LambdaUnify(𝐴2, 𝑒2)) ◦𝐴2))
= 𝑒1 𝑒2

We can then forget the irrelevant part of each merge using Lemma 9 and Lemma 8 where the
precondition (binding all abstraction variables and holes) is satisfied by Lemma 10:

((LambdaUnify(𝐴1, 𝑒1) ◦𝐴1)
(LambdaUnify(𝐴2, 𝑒2) ◦𝐴2))
= 𝑒1 𝑒2

We can then finish the proof by directly applying our inductive hypotheses LambdaUnify(𝐴1, 𝑒1)◦
𝐴1 = 𝑒1 and LambdaUnify(𝐴2, 𝑒2) ◦𝐴2 = 𝑒2.

Case U-Lam. Our goal is

LambdaUnify(𝜆. 𝐴, 𝜆. 𝑒) ◦ 𝜆. 𝐴 = 𝜆. 𝑒

This simplifies by definition of LambdaUnify to

DownshiftAll(LambdaUnify(𝐴, 𝑒)) ◦ 𝜆. 𝐴 = 𝜆. 𝑒

We can move the substitution under the lambda while inserting UpshiftAll as per the definition
of substitution

𝜆. UpshiftAll(DownshiftAll(LambdaUnify(𝐴, 𝑒))) ◦𝐴 = 𝜆. 𝑒

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

41:42 M. Bowers, T. X. Olausson, C. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, A. Solar-Lezama

Since we know that any result of LambdaUnify is well-formed by Lemma 6 we can apply
Lemma 7 to get

𝜆. LambdaUnify(𝐴, 𝑒) ◦𝐴 = 𝜆. 𝑒

We can then apply our inductive hypothesis LambdaUnify(𝐴, 𝑒) ◦𝐴 = 𝑒 to get

𝜆. 𝑒 = 𝜆. 𝑒

and we are done.

CaseU-Same. Our goal is LambdaUnify(𝑒, 𝑒)◦𝑒 = 𝑒 which simplifies by definition of LambdaUnify
to [] ◦ 𝑒 = 𝑒 which is trivially true as the empty substitution has no effect.

□

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 41. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Overview
	3 Corpus-Guided Top-Down Search
	3.1 Algorithm

	4 Applying Corpus-Guided Top-Down Search to Compression
	4.1 Utility
	4.2 Upper Bounding the Utility
	4.3 Strict Dominance Pruning
	4.4 Rewrite Strategy

	5 Combining corpus-guided top-down search with deductive approaches
	6 Experiments
	6.1 Iterative Bootstrapped Library Learning
	6.2 Large-scale Corpus Library Learning
	6.3 Robustness to Early Search Termination
	6.4 Ablation Study
	6.5 Learning Libraries of Higher-Order Functions

	7 Related Work
	7.1 Deductive Refactoring and Library Learning
	7.2 Guided Top-Down Program Synthesis
	7.3 Lambda-aware unification
	7.4 Upper Bounds in Network Motifs
	7.5 Comparison to babble

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Corpus-guided top-down search: full algorithm
	B proof of Correctness of LambdaUnify
	B.1 Well-formedness
	B.2 Relevant Lemmas
	B.3 Correctness Theorem

